2.差异性

1. 四分位数

1.1 简述

        四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制,剔除异常值。四分位数有三个,第一个四分位数就是通常所说的四分位数,称为下四分位数,第二个四分位数就是中位数,第三个四分位数称为上四分位数,分别用Q1、Q2、Q3表示:

    Q1:第一四分位数、“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。

    Q2:第二四分位数、又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。

    Q3:第三四分位数、又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。

    IQR:  又称四分位距,IQR = Q3 - Q1

1.1 确定四分位数

    Q1的位置= (n+1) × 0.25

    Q2的位置= (n+1) × 0.5

    Q3的位置= (n+1) × 0.75

 (n 表示样本数量)

    example :

        n 为奇数

        样本数据:6,10,12,15, 17,19,22,25,29,44 ,66

        数据索引:1、 2、  3、  4、   5、  6、 7、  8、  9、  10、  11 (即可表示为第 1 个数据为 6,第 2 个数据为 10)

        Q1 的位置  :(11 + 1) × 0.25 = 3.0    即 Q1 = 12

        Q2 的位置  :(11 + 1) × 0.5  =  6.0    即 Q2 = 19

        Q3 的位置  :(11 + 1) × 0.75 = 9.0    即 Q3 = 29

          n 为偶数

        样本数据:   7,  15,  36,  39,  40,  41

        数据索引:1、 2、 3、 4、  5、 6

        Q1的位置:(6 + 1)  × 0.25 = 1.75 在第一与第二个数字之间, Q1 = 0.75*15+0.25*7 = 13,

        Q2的位置:  (6 + 1)  × 0.5 = 3.5 在第三与第四个数字之间,Q2 = (36+39)/2= 37.5,

        Q3的位置:(6 + 1)  × 0.75 = 5.25 在第五与第六个数字之间, Q3 = 0.25*41+0.75*40 = 40.25.

1.1 应用

          A.四分位数在统计学中的箱线图绘制方面应用也很广泛。所谓箱线图就是 由一组数据5 个特征绘制的一个箱子和两条线段的图形,这种直观的箱线图不仅能反映出一组数据的分布特征,而且还可以进行多组数据的分析比较。这五个特征值,即数据的最大值、最小值、中位数和两个四分位数。    

        B. IQR (四分位差)

            IQR = Q3 - Q1  

            IQR 的不足:无法考虑所有的数据、完全不同的两个数据集也可以有相同的IQR,例如正太分布、均匀分布、双峰分布。

       C. 定义异常值

            统计学中判断异常值的方式:

            异常值被定义为不在 Q1 - 1.5(IQR)  ~  Q1 + 1.5(IQR) 范围内的数据。

             outlier < Q1 - 1.5(IQR)

                         > Q1 + 1.5(IQR) 

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容