哈希表的原理及实现代码

哈希表可以表述为,是一种可以根据关键字快速查询数据的数据结构

一. 哈希表有哪些优点?

不论哈希表中数据有多少,增加,删除,改写数据的复杂度平均都是O(1),效率非常高

二. 实现哈希表

1. 哈希表原理

如果说每一个数据它都对应着一个固定的位置,那我们查找特定一个数据时,就可以直接查看这个数据对应的位置是否存在数据。一个形象的例子就是学生在教室中的位置,开学的时候,老师会给学生每一个人分配一个位置,而且不允许学生随便乱坐位置,以后老师要查看今天李刚同学有没有上课,直接看李刚同学的位置是不是有人就可以判断,没必要点了全班同学的名才可以知道李刚同学来了没有。

2. 实现简单的哈希表

根据上面的原理,首先,我们要分配一片空间用来存储我们数据,比如是一个空的数组


然后,有数据存进来的时候,按照特定规则得出这个数据在数组中的位置,将数据存进这个位置

我们就以存进一个整型数据为例,特定规则就是取余

根据计算出来的值,将这些数据放入对应的位置,我们的数组变为

我们已经把数据插入到了哈希表中,现在,我们要查找一个数据,只要按照取余规则计算出这个数据在数组中对应的位置,然后查看数组的这个位置,就可以取出这个数据了,比如我们要从哈希表中取出52,根据取余规则,52的计算出来的位置是8,数组中8这个位置是空的,52不在哈希表中,找不到52的数据;从哈希表中取出77,77计算出来的位置是0,数组中0这个位置有值,而且值就是77,从哈希表中取出77的值。

至此,我们知道实现了一个很简单的哈希表的原理,其实还存在很多问题,这个我们接下来讨论,这儿先把我们前面的一些概念用专业的术语替换一下,前面我们所说的特定规则,我们称之为哈希函数,用特定股则计算出来的值称之为哈希值。

3. 还存在哪些问题?

  1. 有可能两个数据通过哈希函数计算出来的哈希值有可能相等,比如77,88计算出来的位置值都是0

  2. 如果哈希表满了,该怎么扩容

第一个问题就是如何解决这种冲突

有开放定址法,链定址法,我们说一下开放定址法,就是将这个冲突的数据再重新计算一个空的位置,将其存进去,比如我们要存放88,哈希值是0,数组这个位置已经有值了,那我们再获取一个哈希值,比如在原哈希值的基础上加1,得到1,1的位置是空,我将88放进去。有人会问,1这个位置被占了,那下一个数据是1这个位置怎么办,这时候,我们还是同样的做法,给这个数据再计算一个哈希值。

插入88后的数组变为


冲突解决了,但我们读取数据的时候,好像又出现问题了,88的哈希值是0,发现数组0位置不是空的,那我们确定88在哈希表中?肯定不行,0这个位置存储的是77,不是88。我们的解决方法是判断0这个位置的值是不是88,不是的话,再计算88的哈希值是1,判断是1这个位置是否为空,为空,则88不在哈希表中;不为空,判断值是否为88,若是88,确定在哈希表中;如果值不是88,我们则继续计算哈希值是2,依次下去,直到找到88或者值为空的位置。

第二个问题,哈希表扩容

一个简单的解决办法是,当插入数据时,发现所有的位置都满了,我们就再分配一个大于原先空间的一片空间,把原来空间中的值重新哈希到新的空间中。

4. 哈希表的python实现

python中的字典就是哈希表,下面代码实现了一个简单的字典

class Dict:

    def __init__(self, size=10):

        self.size = size

        self.key = [None] * self.size

        self.data = [None] * self.size

    def __setitem__(self, key, value):

        assert isinstance(key, int)

        index = self.hash(key)

        if not self.key[index]:

            self.key[index] = key

            self.data[index] = value

        elif self.key[index] == key:

            self.data[index] = value

        else:

            start = index

            while self.key[index] and self.key[index] != key:

                index = self.re_hash(index)

                if index == start:

                    raise Exception('dict is full')

            if self.key[index]:

                self.data[index] = value

            else:

                self.key[index] = key

                self.data[index] = value

    def __getitem__(self, item):

        assert isinstance(item, int)

        index = self.hash(item)

        if not self.key[index]:

            raise KeyError(item)

        else:

            if self.key[index] == item:

                return self.data[index]

            else:

                start = index

                while self.key[index] and self.key[index] != item:

                    index = self.re_hash(index)

                    if start == index:

                        raise KeyError(item)

                if self.key[index] == item:

                    return self.data[index]

                else:

                    raise KeyError(item)

    def __contains__(self, item):

        assert isinstance(item, int)

        index = self.hash(item)

        if not self.key[index]:

            return False

        else:

            if self.key[index] == item:

                return True

            else:

                start = index

                while self.key[index] and self.key[index] != item:

                    index = self.re_hash(index)

                    if start == index:

                        break

                if self.key[index] == item:

                    return True

                else:

                    return False

    def hash(self, key):

        index = key % self.size

        return int(index)

    def re_hash(self, index):

        return index+1

a = Dict()

a[1]='3'

a[2]='4'

print(a[5])

三. 总结:

哈希表对于数据的插入,删除,更新操作复杂的平均是O(1),效率非常高,如果不关心数据的存储顺序,我们可以选取这种数据结构。


转载原文:哈希表的原理及实现代码 - 曲径通幽处 - 博客园

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容