openGauss学习笔记-218 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-I/O

openGauss学习笔记-218 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-I/O218.1 查看I/O状况218.2 性能参数分析

openGauss学习笔记-218 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-I/O

获取openGauss节点的CPU、内存、I/O和网络资源使用情况,确认这些资源是否已被充分利用,是否存在瓶颈点。

通过iostat、pidstat命令或openGauss健康检查工具查看openGauss内节点I/O繁忙度和吞吐量,分析是否存在由于I/O导致的性能瓶颈。

218.1 查看I/O状况

查询服务器I/O的方法主要有以下三种方式:

  • 使用iostat命令查看I/O情况。此命令主要关注单个硬盘的I/O使用率和每秒读取、写入的数量。
iostat -xm 1  //1为间隔时间
    Device:         rrqm/s   wrqm/s     r/s     w/s    rMB/s    wMB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util
    sdc               0.01   519.62    2.35   44.10     0.31     2.17   109.66     0.68   14.62    2.80   15.25   0.31   1.42
    sdb               0.01   515.95    5.84   44.78     0.89     2.16   123.51     0.72   14.19    1.55   15.84   0.31   1.55
    sdd               0.02   519.93    2.36   43.91     0.32     2.17   110.16     0.65   14.12    2.58   14.74   0.30   1.38
    sde               0.02   520.26    2.34   45.17     0.31     2.18   107.46     0.80   16.86    2.92   17.58   0.34   1.63
    sda              12.07    15.72    3.97    5.01     0.07     0.08    34.11     0.28   30.64   10.11   46.92   0.98   0.88
“rMB/s”为每秒读取的MB数,“wMB/s”为每秒写入的MB数,“%util”为硬盘使用率。
  • 使用pidstat命令查看I/O情况。此命令主要关注单个进程每秒读取、写入的数量。
pidstat -d 1 10  //1为采样间隔时间,10为采样次数
    03:17:12 PM   UID       PID   kB_rd/s   kB_wr/s kB_ccwr/s  Command
    03:17:13 PM  1006     36134      0.00  59436.00      0.00  gaussdb
“kB_rd/s”为每秒读取的kB数,“kB_wr/s”为每秒写入的kB数。
  • 使用gs_checkperf工具对openGauss进行性能检查,需要以omm用户登录。
gs_checkperf
    Cluster statistics information:
     Host CPU busy time ratio                     :    .69        %
     MPPDB CPU time % in busy time                :    .35        %
     Shared Buffer Hit ratio                      :    99.92      %
     In-memory sort ratio                         :    100.00     %
     Physical Reads                               :    8581
     Physical Writes                              :    2603
     DB size                                      :    281        MB
     Total Physical writes                        :    1944
     Active SQL count                             :    3
     Session count                                :    11
显示结果包括每个节点的I/O使用情况,物理读写次数。

也可以使用gs_checkperf –detail命令查询每个节点的详细性能信息。

218.2 性能参数分析

1、检查磁盘空间使用率,建议不要超过60%。

df -T

2、若I/O持续过高,建议尝试以下方式降低I/O。

  • 降低并发数。

  • 对查询相关表做VACUUM FULL。

vacuum full tablename;
> [图片上传失败...(image-62bf0e-1707830591030)]
> 
>   **说明:**  建议用户在系统空闲时进行VACUUM FULL操作,VACUUM FULL操作会造成短时间内I/O负载重,反而不利于降低I/O。

👍 点赞,你的认可是我创作的动力!

⭐️ 收藏,你的青睐是我努力的方向!

✏️ 评论,你的意见是我进步的财富!

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容