如果您觉得本文不错!记得点赞哦!
一. 图像形态学简介:
经验之谈:形态学操作一般作用于二值图像,来连接相邻的元素(膨胀)或分离成独立的元素(侵蚀)。腐蚀和膨胀是针对图片中的白色(即前景)部分!
二. 图像形态学操作 膨胀和腐蚀的算法:
膨胀算法:
对于待操作的像素 f(x,y),不论 f(x,y-1) 、f(x,y+1) 、f(x-1,y) 、f(x+1,y) 哪一个为255,则 f(x,y)=255。
换句话说:将待操作的图像像素与以下 4-近邻矩阵 相乘,结果大于255的话,将中心像素设为255。
腐蚀算法:
对于待操作的像素 f(x,y),只有 f(x,y-1) 、f(x,y+1) 、f(x-1,y) 、f(x+1,y) 都为255,则 f(x,y)=255。
换句话说:将待操作的图像像素与以下 4-近邻矩阵 相乘,结果小于255*4的话,将中心像素设为0。
三. python实现图像膨胀和腐蚀
# Writer : wojianxinygcl@163.com
# Date : 2020.3.21
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Gray scale
def BGR2GRAY(img):
b = img[:, :, 0].copy()
g = img[:, :, 1].copy()
r = img[:, :, 2].copy()
# Gray scale
out = 0.2126 * r + 0.7152 * g + 0.0722 * b
out = out.astype(np.uint8)
return out
# Otsu Binalization
def otsu_binarization(img, th=128):
H, W = img.shape
out = img.copy()
max_sigma = 0
max_t = 0
# determine threshold
for _t in range(1, 255):
v0 = out[np.where(out < _t)]
m0 = np.mean(v0) if len(v0) > 0 else 0.
w0 = len(v0) / (H * W)
v1 = out[np.where(out >= _t)]
m1 = np.mean(v1) if len(v1) > 0 else 0.
w1 = len(v1) / (H * W)
sigma = w0 * w1 * ((m0 - m1) ** 2)
if sigma > max_sigma:
max_sigma = sigma
max_t = _t
# Binarization
print("threshold >>", max_t)
th = max_t
out[out < th] = 0
out[out >= th] = 255
return out
# Morphology Dilate
def Morphology_Dilate(img, Dil_time=1):
H, W = img.shape
# kernel
MF = np.array(((0, 1, 0),
(1, 0, 1),
(0, 1, 0)), dtype=np.int)
# each dilate time
out = img.copy()
for i in range(Dil_time):
tmp = np.pad(out, (1, 1), 'edge')
for y in range(1, H):
for x in range(1, W):
if np.sum(MF * tmp[y-1:y+2, x-1:x+2]) >= 255:
out[y, x] = 255
return out
# Morphology Erode
def Morphology_Erode(img, Erode_time=1):
H, W = img.shape
out = img.copy()
# kernel
MF = np.array(((0, 1, 0),
(1, 0, 1),
(0, 1, 0)), dtype=np.int)
# each erode
for i in range(Erode_time):
tmp = np.pad(out, (1, 1), 'edge')
# erode
for y in range(1, H):
for x in range(1, W):
if np.sum(MF * tmp[y-1:y+2, x-1:x+2]) < 255*4:
out[y, x] = 0
return out
# Read image
img = cv2.imread("../paojie.jpg").astype(np.float32)
# Grayscale
gray = BGR2GRAY(img)
# Otsu's binarization
otsu = otsu_binarization(gray)
# Morphology - dilate
erode_result = Morphology_Erode(otsu, Erode_time=2)
dilate_result = Morphology_Dilate(otsu,Dil_time=2)
# Save result
cv2.imwrite("Black_and_white.jpg",otsu)
cv2.imshow("Black_and_white",otsu)
cv2.imwrite("erode_result.jpg", erode_result)
cv2.imshow("erode_result", erode_result)
cv2.imwrite("dilate_result.jpg", dilate_result)
cv2.imshow("dilate_result",dilate_result)
cv2.waitKey(0)
cv2.destroyAllWindows()
四. 实验结果:
五. 参考内容:
① https://www.cnblogs.com/wojianxin/p/12542004.html
② https://blog.csdn.net/Ibelievesunshine/article/details/105016890
六. 版权声明:
未经作者允许,请勿随意转载抄袭,抄袭情节严重者,作者将考虑追究其法律责任,创作不易,感谢您的理解和配合!