1 文章结构脑图
2 了解现有的组织和文化规范
数据管理和数据治理组织需要足够灵活,才能在不断发展的环境中有效地工作。因此,他们需要澄清关于所有权、协作、责任和决策的基本问题。 <font color =green>P432</font>
本节将描述在组建数据管理或数据治理组织时应该考虑的一组原则,同时涉及数据治理和数据管理,因为数据治理为数据管理组织执行活动提供指导和业务背景。 <font color =green>P432</font>
意识、所有权和问责制度是激励和吸引人们参与数据管理积极性、政策和流程的关键。 <font color =green>P432</font>
**了解当前组织的企业文化、运营模式和人员都非常重要。例如: ** 见下图16-1。 <font color =green>P432</font>
- <font color=red>数据在组织中的作用</font>。数据驱动的关键流程是什么?如何定义和理解数据需求?数据在组织战略中扮演的角色如何?
- <font color=red>关于数据的文化规范</font>。实施或改进管理和治理结构时,是否存在潜在的文化障碍?
- <font color=red>数据管理和数据治理实践</font>。如何以及由谁来执行与数据相关的工作?如何以及由谁来做出有关数据的决策?
- <font color=red>如何组织和执行工作</font>。例如,专注于项目和运营执行之间的关系是什么?哪些委员会框架可以支持数据管理工作?
- <font color=red>汇报关系的组织方式</font>。例如,组织是集中的、分散的、层级化的,还是扁平化的?
- <font color=red>技能水平</font>。从一线员工到高管、领域专家和其他利益相关方的数据知识和数据管理知识水平如何?
数据管理组织应与公司的组织层级结构和资源保持一致。找到合适的人员,<font color=red>需要了解数据管理在组织内部的功能和政治作用。目标应该是跨职能的不同业务利益相关方共同参与</font>。
需要做到: <font color =green>P433</font>
- <font color=red>识别</font>当前正在执行数据管理职能的<font color=red>员工</font>,认识并先邀请他们参与进来。仅在数据管理和治理需求增长时,才考虑投入更多的资源。
- <font color=red>检验</font>组织管理数据的<font color=red>方法</font>,并<font color=red>确定</font>如何改进<font color=red>流程</font>。改进数据管理实践可能需要进行多次改变。
- 从组织的角度考虑,<font color=red>规划</font>需要进行的各种<font color=red>变更</font>,以更好地满足需求。
3 数据管理组织的结构
数据管理组织设计中的一个关键步骤是确定组织的最佳运营模式。运营模式是阐明角色、责任和决策过程的框架,它描述了人们如何互相协作。 <font color =green>P434</font>
分散运营模式 <font color =green>P434</font>
在分散运营模式中,数据管理职能分布在不同的业务部门和IT部门。 委员会是互相协作的基础,委员会不属于任何一个单独的部门。许多数据管理规划从基层开始,意图统一整个组织的数据管理实践,因而具有分散的结构。 见下图16-2.
<font color=red>优点</font>包括:组织结构相对扁平,数据管理组织与业务线或IT部门具有一致性。这种一致性通常意味着对数据要有清晰的理解,相对==容易实施==或改进。
<font color=red>缺点</font>是让过多的人员参与治理和制定决策,实施协作决策通常比集中==发布号令更加困难==。分散模式一般==不太正式==,可能==难以长期性维持==。为了取得成功,他们需要一些方法强化实践的一致性,但这可能很难协调。使用分散模式来定义数据所有权,通常也比较困难。网络运营模式 <font color =green>P435</font>
通过RACI(谁负责,Responsible;谁批准,Accountable;咨询谁,Consulted;通知谁,Informed)责任矩阵,利用一系列的文件记录联系和责任制度,称为网络模式。它作为人和角色之间的一系列已知连接运行,可以表示为“网络”。 见下图16-3.
<font color=red>优点</font>类似于分散模式(结构扁平、观念一致、快速组建)。采用RACI,有助于==在不影响组织结构的情况下建立责任制==。
<font color=red>缺点</font>是==需要维护和执行与RACI相关的期望==。集中运营模式 <font color =green>P435</font>
最正式且成熟的数据管理运营模式是集中运营模式。所有工作都由数据管理组织掌控。参与数据治理和数据管理的人员直接向负责治理、管理职责、元数据管理、数据质量管理、主数据和参考数据管理、数据架构、业务分析等工作的数据管理主管报告。见下图16-4.
<font color=red>优点</font>是,它为数据管理或数据治理建立了正式的管理职位,且拥有一个最终决策人。因为==职责是明确==的,所以==决策更容易==。在组织内部,可以按不同的业务类型或业务主题分别管理数据。
<font color=red>缺点</font>是,实施集中模式通常需要重大的组织变革。将数据管理的角色从核心业务流程正式分离,==存在业务知识逐渐丢失的风险==。
集中模式通常需要创建一个新的组织。混合运营模式 <font color =green>P436</font>
混合运营模式包含分散模式和集中模式的优点。在混合模式中,一个集中的数据管理卓越中心与分散的业务部门团队合作,通常通过一个代表关键业务部门的==执行指导委员会==和一系列针对特定问题的==技术工作组==来完成工作。见下图16-5.
<font color=red>优点</font>是,它可以从组织的顶层制定适当的指导方向,并且有一位对数据管理或数据治理负责的高管。业务团队具有广泛的责任感,可以通过业务优先级调整给予更多的关注。他们受益于这个专门的数据管理卓越中心的支持,有助于将重点放在特定的挑战上。
<font color=red>缺点</font>包括组织的建立,通常这种模式需要配备额外的人员到卓越中心。业务团队可能有不同的优先级,这些优先级需要从企业自身的角度进行管理。此外,中央组织的优先事项与各分散组织的优先事项之间有时也会发生冲突。联邦运营模式 <font color =green>P437</font>
作为<font color=red>混合运营模式的一种变体,联邦模式提供了额外的集中层/分散层,这在大型全球企业中通常是必需的。
联邦模式提供了一个具有分散执行的集中策略</font>。因此,对于大型企业来说,它可能是唯一可行的模式。一个负责整个组织数据管理的主管领导,负责管理企业卓越中心。当然,不同的业务线有权根据需求和优先级来适应要求。该模式使组织能够根据特定数据实体、部门挑战或区域优先级来确定优先级。
<font color=red>优点</font>:一个具有分散执行的集中策略。大型企 业是唯一可行的模式。能根据特定数据实体、部门挑战或区域优先级来确定优先级。
<font color=red>缺点</font>是管理起来较复杂。它的层次太多,需要在业务线的自治和企业的需求之间取得平衡,而这种平衡会影响企业的优先级。
运营模式是改进数据管理和数据治理实践的起点。引入运营模式之前,需要了解它如何影响当前组织以及它可能会如何发展。由于运营模式将帮助政策和流程的定义、批准和执行,因此确定最适合组织的运营模式是至关重要的。 <font color =green>P438</font>
大多数组织在转向正式的数据管理组织(DMO)之前,都处于分散模式。 <font color =green>P438</font>
无论选择哪种模式,请记住<font color=red>简单性、可用性对于接受和可持续性</font>是至关重要的。 <font color =green>P438</font>
构建一个运营模式时,需注意以下要点:<font color =green>P438</font>
- 通过评估当前状态来确定起点。
- 将运营模式与组织结构联系起来。
-
考虑: 1组织复杂性+成熟度。
2领域复杂性+成熟度。
3可扩展性。 - 获得高层支持——这是可持续发展模式的必要条件。
- 确保任何领导机构(指导委员会、咨询委员会、董事会)都是决策机构。
- 考虑试点规划和分批次实施。
- 专注于高价值、高影响力的数据域。
- 使用现有的资源。
- 永远不要采用一刀切(One-Size-Fits-All)的方法。
4 关键因素
无论数据管理组织的架构如何,有10个因素始终被证明对其成功发挥着关键作用: <font color =green>P439</font>
- <font color=red>高管层的支持</font>。拥有合适的高管层支持,可确保受数据管理规划影响的利益相关方获得必要的指导。
- <font color=red>明确的愿景</font>。 拥有合适的高管层支持,可确保受数据管理规划影响的利益相关方获得必要的指导。
- <font color=red>主动的变更管理</font>。将组织的变革管理应用于数据管理组织的建立,可以解决人们面临的挑战,使数据管理组织获得长期可持续发展的可能
- <font color=red>领导者之间的共识</font>。领导者之间的共识,包括领导者对目标与数据管理成果和价值的共识,以及对领导者宗旨的共识。
- <font color=red>持续沟通</font>。 应尽早展开沟通,并保持公开和一定的频率。
- <font color=red>利益相关方的参与</font>。通过获取这些信息并根据组织内的影响程度和数据管理实施中的兴趣(或因数据管理实施而产生的影响)对利益相关方进行映射,组织可以确定让不同利益相关方参与变更过程的最佳方法
- <font color=red>指导和培训</font>。不同的群体需要不同类型和层次的培训,培训对于实现数据管理是至关重要的。
- <font color=red>采用度量策略</font>。围绕数据管理计划的进展情况制定度量标准是非常重要的,这有助于了解当前的数据管理路线图是否有效,以及是否继续有效。
- <font color=red>坚持指导原则</font>。指导原则阐明了组织的共同价值观,是战略愿景和使命的基础,也是综合决策的基础。
- <font color=red>演进而非革命</font>。“演进而非革命”的理念有助于最大限度地减少重大变化或大规模高风险项目。
**如何制定度量标准,具体如下: ** <font color =green>P441</font>
- <font color=red>是否采用</font>。
- <font color=red>改进的程度,或相对于之前状态的增量</font>。
- <font color=red>数据管理的有利方面</font>。数据管理如何影响结果可测量的解决方案。
- <font color=red>改进的流程和项目</font>。
- <font color=red>识别并规避的风险</font>。
- <font color=red>数据管理的创新方面</font>。数据管理如何从根本上改变业务的方式。
- <font color=red>可信度分析</font>。
坚持指导原则: 指导原则阐明了组织的共同价值观,是战略愿景和使命的基础,也是综合决策的基础。指导原则构成了组织在长期日常活动中遵循的规则、约束、标准和行为准则。无论是分散的运营模式,还是集中的运营模式,还是介于两者之间的任何形式,<font color=red>都必须建立和商定指导原则,使所有参与者保持一致的行事方式</font>。指导原则是做出所有决策的参考,是创建有效数据管理计划的重要步骤,它有效地推动了组织行为的转变。 <font color =green>P441</font>
5 建立数据管理组织
- <font color=red>识别当前的数据管理参与者</font>。 <font color =green>P442</font>
确保将角色指派给正确且级别恰当的人员。
<font color=red>识别委员会的参与者</font>。 <font color =green>P442</font>
让合适的人员加入指导委员会,并充分利用他们的时间,这是非常重要的。让他们了解情况并专注于改进数据管理, 将有助于他们实现业务目标和战略目标。
利用现有的委员会推进数据治理工作往往较容易,但有可能使得数据管理工作无法获得所需关注,尤其是早期阶段。<font color=red>识别和分析利益相关方</font>。 <font color =green>P442</font>
利益相关方是指能够影响数据管理规划或被其影响的任何个人或团体。利益相关方可以在组织内部或外部,他们可能是领域专家、高级领导者、员工团队、委员会、客户、政府或监管机构、经纪人、代理商、供应商等。内部利益相关方可能来自IT、运营、合规、法律、人力资源、财务或其他业务部门。
利益相关方分析需要回答以下问题: 1)谁将受到数据管理的影响。2)角色和职责如何转变。3)受影响的人如何应对变 化。4)人们会有哪些问题和顾虑。
分析的结果将确定: 利益相关方名单、他们的目标和优先事项,以及这些对他们重要的原因。根据分析,找出利益相关方会采取的行动。
这些关键的利益相关方可以决定组织的数据管理成功与否,尤其是最初的优先事项。
考虑以下几点: 1)谁控制关键资源。2)谁可以直接或间接阻止数据管理计 划。3)谁可以影响其他关键因素。4)利益相关方是否会支持即将发生的变化。<font color=red>让利益相关方参与进来</font>。 <font color =green>P443</font>
在识别利益相关方、高层支持者或列出备选名单后,清楚地阐明为什么每个利益相关方都包含在内是非常重要的。
6 数据管理组织与其他数据相关机构之间的沟通
在分散或网络模式下,数据管理组织则需要与对数据管理方式产生重大影响的其他团体合作。 这些团体通常是: <font color =green>P444</font>
1)首席数据官组织。
2)数据治理机构。
3)数据质量团队。
4)企业架构团队。
首席数据官组织。 <font color =green>P444</font>
2014年,Dataversity发布了概述CDO常见任务的研究。其中包括:
1)建立组织数据战略。
2)使以数据为中心的需求与可用的IT和业务资源保持一致。
3)建立数据治理标准、政策和程序。
4)为业务提供建议(以及可能的服务)以实现数据能动性,如业务分析、大数据、数据质量和数据技术。
5)向企业内外部利益相关方宣传良好的信息管理原则的重要性。
6)监督数据在业务分析和商务智能中的使用情况。数据治理机构。 <font color =green>P445</font>
<font color=red>数据治理是用于建立有效管理企业数据的战略、目标和策略的组织框架</font>。它由管理和确保数据的可获得性、可用性、完整性、一致性、可审计性和安全性所需的流程、策略、组织和技术组成。由于数据治理过程需要数据战略、标准、政策和沟通的相互作用,因此它与数据管理具有协同关系。数据治理为数据管理提供了一个框架,使其与业务优先级和利益相关方保持一致。
数据治理是要“做正确的事情”,数据管理是要“将事情做正确”。数据质量团队。 <font color =green>P445</font>
数据质量管理是数据管理实践和组织的关键能力。许多数据管理组织的工作最早从关注数据质量开始,期望评估和改进整个组织的数据质量。
<font color=red>当数据质量管理的目标是提升跨业务线或应用程序共享的数据质量时,通常侧重于主数据管理</font>。企业架构团队. <font color =green>P446</font>
企业架构团队负责设计并记录组织的总体蓝图,阐明如何实现其战略目标并进行优化。
企业架构实践包括:
1)<font color=red>技术架构</font>。
2)<font color=red>应用架构</font>。
3)<font color=red>信息(或数据)架构</font>。
4)<font color=red>业务架构</font>。
数据架构是数据管理组织有效运行的关键能力。因此,数据架构师可以安排在任一团队中,同时服务于其他团队。
当组织没有数据架构师时,数据管理可以通过以下几种方式与架构组织进行交互:
1)<font color=red>通过数据治理</font>。由于数据管理和企业架构都参与了数据治理计划,因此治理工作组和委员会框架可以提供一个共同的目标、期望、标准和活动平台。
2)<font color=red>通过ARB</font>。在将数据管理项目提交给ARB后,架构团队将提供指导、反馈和批准。
3)<font color=red>点对点(Ad-hoc)</font>。如果没有正式的委员会,那么数据管理负责人应定期与架构负责人会面,以确保双方对受影响的项目和流程有共同的认识和理解。管理全球化组织 <font color =green>P446</font>
全球化组织需要特别注意:
1)遵守标准。
2)同步流程。
3)明确责任制度。
4)培训和交流。
5)有效地监控和度量。
6)发展规模经济。
7)减少重复性工作
==架构审查委员会(Architecture Review Boards,ARB)==
7 数据管理角色
7.1 组织角色
<font color=red>组织角色: IT 数据管理组织提供从数据、应用程序和技术架构到数据库管理的一系列服务</font>。 <font color =green>P447</font>
集中式数据管理 服务组织专注于数据管理,该组织团队可能包括数据管理执行官、其他数据管理的管理人员、数据架构师、数据分析师、数据质量分析师、数据库管理员、数据安全管理员、元数据专家、数据建模师、数据管理员、数据仓库架构师、数据集成架构师和商务智能分析师。 <font color =green>P447</font>
联邦式数据管理 服务方式会包括一组IT单元,而每个单元分别侧重于数据管理的某个方面。特别是在大型组织中,这些IT单元的职能通常是分散的。例如,每个业务线可能都有自己的软件开发团队。也许,还同时采用了混合模式。例如,虽然每个业务线有自己的开发人员,但DBA功能可能是集中的。<font color =green>P447</font>
专注于数据管理的业务线通常与数据治理或企业信息管理团队相关。例如,数据管理专员通常是数据治理组织的一部分。这些组织将促进数据治理机构的设立,如数据治理委员会。<font color =green>P447</font>
7.2 个人角色
个人角色: 个人角色可以从业务或 IT 角度分别定义。有执行官角色、业务角色、IT 角色、混合角色。 <font color =green>P448</font>
【1.执行官角色】
<font color=red>数据管理执行官</font>可能侧重于业务或技术层面,<font color=red>首席信息官和首席技术官</font>则在 IT 方面发挥着重要作用。 <font color =green>P448</font>
【2.业务角色】
<font color=red>业务角色主要关注数据治理功能,尤其是管理职责</font>。数据管理专员通常被认为是领域专家,他 们对业务实体的数据质量和元数据、主题域或数据库负责。依据组织的优先级不同,数据管理 专员扮演不同的角色。数据管理职责最初重点,通常是为其主题领域定义业务术语和有效值。 业务流程分析师和流程架构师也有助于确保业务流程模型和创建数据的实际流程的合理性, 并支持下游使用它们。 <font color =green>P448</font>
【3.IT角色】
IT 角色包括不同类型的架构师、不同级别的开发人员、数据库管理员以及一系列支持性角色。 <font color =green>P448</font>
- ==数据架构师(Data Architect)==。负责数据架构和数据集成的高级分析师。数据架构师可以在企业级或某个功能级别开展工作。数据架构师一般致力于数据仓库、数据集市及其相关的集成流程。
- ==数据建模师(Data Modeler)==。负责捕获和建模数据需求、数据定义、业务规则、数据质量要求、逻辑和物理数据模型。
- ==数据模型管理员(Data Model Administrator)==。负责数据模型版本控制和变更管理。
- ==数据库管理员(Database Administrator)==。负责结构化数据资产的设计、实施和支持,以及提高数据访问性能的技术方法。
- ==数据安全管理员(Data Security Administrator)==。负责确保对不同保护级别数据的受控访问。
- ==数据集成架构师(Data Integration Architect)==。负责设计数据集成和提高企业数据资产质量的高级数据集成开发人员。
- ==数据集成专家(Data Integration Specialist)==。负责实现以批量或准实时方式集成(复制、提取、转换、加载)数据资产的软件设计或开发人员。
- ==分析/报表开发人员(Analytics/Report Developer)==。负责创建报表和分析应用解决方案的软件开发人员。
- ==应用架构师(Application Architect)==。负责集成应用系统的高级开发人员。
- ==技术架构师(Technical Architect)==。负责协调和集成IT基础设施,以及IT技术框架的高级技术工程师。
- ==技术工程师(Technical Engineer)==。负责研究、实施、管理和支持某一块信息技术基础设施的高级技术分析师。
- ==桌面管理员(Help Desk Administrator)==。负责处理、跟踪和解决与信息、信息系统或IT基础设施使用相关的问题。
- ==IT审计员(IT Auditor)==。负责包括审计数据质量和数据安全性的IT内部或外部的审计人员。
【4.混合角色】
混合角色: 需要同时具备业务和技术知识,根据组织的不同情况确定担任这些角色的人员是汇 报给 IT 部门还是业务部门。 <font color =green>P449</font>
- ==数据质量分析师(Data Quality Analyst)==。负责确定数据的适用性并监控数据的持续状况;进行数据问题的根因分析,并帮助组织识别提高数据质量的业务流程及技术改进。
- ==元数据专家(Metadata Specialist)==。负责元数据的集成、控制和交付,包括元数据存储库的管理。
- ==BI架构师(Business Intelligence Architect)==。负责商务智能用户环境设计的高级商务智能分析师。
- ==BI分析师/管理员(Business Intelligence Analyst/Administrator)==。负责支持业务人员有效使用商务智能数据。
- ==BI项目经理(Business Intelligence Program Manager)==。负责协调整个公司的BI需求和计划,并将它们整合成一个整体的优先计划和路线图。
8 关键架构图
-
图16-1 评估当前状态以构建运营模式
-
图16-2 分散运营模式
-
图16-3 网络运营模式
-
图16-4集中运营模式
-
图16-5 混合运营模式
-
图16-6 联邦运营模式
-
图16-7 利益相关方兴趣图