Hive知识汇总

两种Hive表

hive存储:数据+元数据

托管表(内部表)

创建表:

hive> create table test2(id int,name String,tel String)
    > ROW FORMAT DELIMITED
    > FIELDS TERMINATED BY ',';

准备数据文件my.txt

1,scc0,20,131888888888
2,scc1,22,13222222222
3,scc2,21,183938384983

灌数据:

load data local inpath '/usr/local/src/my.txt' into table test2;

查看数据:

hive> select * from test2;
OK
1   scc0    20
2   scc1    22
3   scc2    21
Time taken: 0.132 seconds, Fetched: 3 row(s)

hdfs中的warehouse文件夹下面会多一个文件夹叫做test2。里面的文件名叫做my.txt
删除表:

hive> drop table test2;
OK
Time taken: 0.43 seconds

warehouse文件夹下的test2以及里面的所有文件被删除。内部表删除会同时删除元数据和数据文件。在建表的时候可以指定location,创建的内部表默认是存在warehouse/[tablename],也可以指定目录存放。

create table test2(id int,name String,tel String) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' location '/scc/tmpdir';

外部表

创建表:
多加一个关键词external

create table test3(id int,name String,tel String) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

也可以指定location。默认还是放在warehouse/[tablename]
灌数据方式同上。
查看方式同上。
删除命令同上:
删除后查询:

hive> show tables;
OK
haha
Time taken: 0.034 seconds, Fetched: 1 row(s)

表中已经不再存在test3, 但是HDFS中的目录以及文件均存在。说明外部表在删除的时候仅仅删除了元数据,并未删除存储文件。

分区和桶

表大于分区大于桶
参考此链接

1. 先说分区

在HDFS中,分区的表现为表的子目录。
在创建分区的命令上,分区表现为指定分区partitioned by (partitio-name string)
在查询方式上,分区就相当于表的字段。

创建带分区(以时间time为分区)的表:
create table tbhaspar(id int,name string,tel string) partitioned by(time string)  row format delimited fields terminated by ',';
准备数据:

(下面数据中不含time字段,也可以带有time字段,如果按照下面灌数据的方式,带有的time字段的数据会被分区名覆盖掉)

1,scc0,131888888888
2,scc1,13222222222
3,scc2,183938384983
4,scc3,16222232222
5,scc4,17222222222
灌数据:
load data local inpath '/usr/local/src/my.txt' into table tbhaspar partition (time='03-01'); 
load data local inpath '/usr/local/src/my.txt' into table tbhaspar partition (time='03-02'); 
load data local inpath '/usr/local/src/my.txt' into table tbhaspar partition (time='03-03'); 
查询

(创建表的时候指定了3个字段1个分区,接下来的查询结果就好像是看到了4个字段):

hive> select * from tbhaspar;
OK
1   scc0    131888888888    03-01
2   scc1    13222222222 03-01
3   scc2    183938384983    03-01
4   scc3    16222232222 03-01
5   scc4    17222222222 03-01
1   scc0    131888888888    03-02
2   scc1    13222222222 03-02
3   scc2    183938384983    03-02
4   scc3    16222232222 03-02
5   scc4    17222222222 03-02
1   scc0    131888888888    03-03
2   scc1    13222222222 03-03
3   scc2    183938384983    03-03
4   scc3    16222232222 03-03
5   scc4    17222222222 03-03
Time taken: 0.081 seconds, Fetched: 15 row(s)

查看表信息:
hive> describe tbhaspar;
OK
id                      int                                         
name                    string                                      
tel                     string                                      
time                    string                                      
         
# Partition Information      
# col_name              data_type               comment             
         
time                    string                                      
Time taken: 0.09 seconds, Fetched: 9 row(s)

指定分区查询

(下面的查询方式,好像分区真的是一个字段):

select * from tbhaspar where time = '03-01';

对,上面说的都是静态分区,下面看看动态分区。

动态分区

可以根据查询得到的数据动态分配到分区里。其实动态分区与静态分区区别就是不指定分区目录,由系统自己选择。
该功能需要手动开启:

hive> set hive.exec.dynamic.partition=true;
  1. 创建一个跟刚才一样的分区表id,name,tel partition=time
  2. 灌数据。灌数据的方式只能通过从别的表查询得到,不能直接从local文件加载。我们下面从刚才的静态分区表进行加载(当然我们此时把分区表当成未分区表来用,现实中都是先把数据加载到普通表,然后再读取并加载到动态分区中)。
hive> insert  overwrite  table  tbhasdypar partition(time) select * from tbhaspar; 

执行完就开始调MR了。。等一会儿看结果!直接就分区了!很帅!


image

2. 再说桶

桶是更细粒度的数据范围划分。桶的作用体现之一:MR阶段可以大大减少Join操作(别人这么说的,我不知道)。
Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。

建一个带桶的表

按照id分成3个桶。

hive> create table buck2 (id int,name string) clustered by (id) sorted by(id) into 3 buckets row format delimited fields terminated by ',' stored as textfile;  
灌数据

先看一眼我们要灌的数据

image
hive> insert overwrite table buck2 select id,name from tbhaspar;
看结果

看结果之前,先设置一下这个:

set mapreduce.job.reduces=4;

为什么?因为分区的效果就是在MapReduce中体现出来的。我们设置多个Reduce观察一下排序结果。

image

HDFS的buck2下面多了三个文件夹,对应值hash得到的三种余数。
执行:

hive> select * from buck2 ;

下图结果中,正好是三个桶,而且是hash分桶,很明显。

image

上面是一个无序结果。下面的命令可以查看有序的结果。会在每个reduce里面排序。

hive> select * from buck2 sort by id ;

Hive避免MapReduce

把这个属性设置为true

hive.exec.mode.local.auto=true

hive在运行的时候尝试先使用本地模式运行 否则几乎所有的操作都会触发MR

分区查询-strict严格模式

hive.mapred.mode=strict

上述参数 严格模式下 如果针对分区表的查询,where子句没有添加分区过滤的话,任务禁止提交。

hive.mapred.mode=nonstrict

上述参数 取消严格模式

Hive数据倾斜问题 以及解决思路

MR阶段,Map产生的数据是根据Hash算法生成的key,按key选择合适的reduce,会因为数据特殊性引起的key聚集,造成某些Reduce任务繁重,某些reduce几乎没有任务。
配置参数
hive.map.aggr=true//Map 端部分聚合,相当于Combiner
hive.groupby.skewindata=true
原理就是:将数据随机分成两个Job,第一个job随机分到不同的reduce,很有可能出现相同的key在不同的reduce里面。第二个Job可以根据预处理的反馈,将key分配到对应的reduce中,基本上同一个key都在一个reduce里面。整体上可以减少数据处理时间,做到负载均衡。
SQL调节

  1. 如果两个表都是大表,那么可以对key较少的那部分,可以赋一个随机的key,值为null。倾斜的数据可以分配到不同的reduce上,null值也不会影响最后的结果计算。
  2. 如果表一大一小(约定1000条记录一下),内存加载较小的表在map端完成redcue操作。
    还有其他方法,没使用过,略去不表。

Hive中的order by,sort by,distribute by, cluster by作用以及用法

  1. order by:在查询的时候sql指定,进行全局排序。不管会有多少个map节点,只会在一个reduce节点内进行处理,所以会很慢。并且,如果手动设置了严格模式,还是必须要指定limit条数的,因为数据量非常大,可能不会出结果。
  2. sort by:原理类似于归并排序。在每个reduce节点进行排序,做到局部有序,最后进行全局排序的时候就可以提升不少的效率。
  3. distribute by:都是和sort by 一起使用,并且先于它。作用是将指定的字段值相同的,分配到同一个reduce进行处理。参考这个链接- distribute by和sort by一起使用
  1. cluster by:是2,3的合并
    cluster by id等价于distibute by id sort by id
    和3中语句等价的语句:
select mid, money, name from store cluster by mid sort by money  

Hive文件存储、压缩格式

  1. text file
    默认设置。建表时会把数据文件拷贝到hdfs上不进行处理。
  2. sequence file
    二进制存储。分割,压缩比较方便。使用<key,value>存储,key是空的。
    三种压缩可选,None,Record,Block。Record效率低一些,一般用Block
  3. rc file行列存储 不好用
  4. orc file 3的升级版。性能很好,存储效率比text file节省很多。
    从本地加载数据只用用text file格式。然后才可以通过text file转换成2,3,4的格式。
    text file文件可以直接通过cat 查看。而2,3,4的源文件无法直接查看,只能借助表查询才能查看其中的内容。

=====================
我的其他相关文章:

  1. Hive知识汇总
  2. 大数据研发相关-面试拾遗(备战积累的知识点)
  3. 2018年春招面试实战记录-大数据开发相关岗位
  4. HadoopMR-Spark-HBase-Hive
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容