【机器学习基础】将回归模型用于分类问题

线性模型回顾

我们回顾一下之前的三种线性模型,它们的共同点是都要对输入的数据x做一个加权的分数s。



下图表示了这三种不同的线性模型的表示方式、误差函数和求解最小的Ein的方法。



这里可以看出,PLA算法这种线性分类模型,在求解Ein的时候是很困难的,相对而言,线性回归和logistic回归都有各自求解Ein的方法,那么我们能不能用这两种回归的计算方法来帮助求解线性分类问题的Ein呢?

误差函数的比较

接下来,我们将这三个方法的误差函数进行一下变形,把y和s凑在一起,方便我们后面的分析。这里ys表示分类的正确性分数(correctness score),这个值是正的说明是同号的,并且这个值越大越好。



我们可以将误差函数画出来,将cross-entropy的误差函数乘以一个常数,我们可以得到他们之间的关系,故均方误差和交叉熵误差都可以做线性分类的误差函数的上限。




我们可以得到这三个误差函数的大小关系,这就表示我们可以用线性回归和logistic回归来求解线性分类的参数,这两种方法的优点是方便对误差函数求解优化问题,缺点是它们在特定的区域都存在过于松垮的上限。

多元分类

一对多法(One-Versus-ALL,OVA)

如果对于多元分类的问题,我们该如何用二元分类的方法进行扩展呢?
如下图所示的例子,我们可以选一个类别,比如正方形作为正例,其他的数据都作为负例,这样我们可以将该类和其他类有效的分开。这样我们就可以将区域进行有效的划分,如图,可以划分成9个区域,但是我们同时发现,在画叉的区域并不是划分为一个类别,有可能属于两个类别。中间的区域还会被所有分类器都判定为负例。



为了解决这个问题,我们可以尝试用logistic回归的方法,不是明确将数据实例硬性分开,而是给出一个软性的类别,即给出该区域实例所属类别的概率,这样某个实例具体的所属类别是其最大概率的类别。



下面给出这种一对多的方法的具体步骤:

这个方法的优点是快速有效,缺点是当类别数目很大时,所有的假设都会将数据归为负例,使得效果不理想。

一对一法(One-Versus-One,OVO)

还有一种用于多元分类的方法是一对一法。
我们可以选取一个类别与其它任意一个类别进行分类(故名一对一法),比如4个类别的情形,会产生6个线性分类器。
那么,当要预测某个数据实例的所属类别时,可以得到这6个分类器预测的类别,将这些类别进行投票,将投票数最多的类别作为最终输出的类别。




这个方法的优点是有效率,不同于一对多法(OVA),一对一法训练时是将任意两个类别的数据构建分类的,而一对多法是将所有数据用来构建一个分类器的。
缺点是要计算O(K^2)这么多的w,这就需要更多的存储空间、更长的预测时间和训练。

参考资料

机器学习基石课程,林轩田,台湾大学

转载请注明作者Jason Ding及其出处
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容