一个关于tf.data的简介

原视频地址在这儿:https://www.youtube.com/watch?v=uIcqeP7MFH0

视频中介绍了tf.data设计的一些原则和一些基本用法。设计的三个原则:

1. 快速高效

tf.data可以在每秒读取13000张图片,官网上有一页专门介绍输入数据pipeline的效率。输入输入的pipeline分为以下三步(ETL)

分别是从数据源头处读取数据(Extract)(比如内存,磁盘,远程服务器,云端)、对数据做一系列的变换(Transform)、载入CPU或者GPU(Load)等等,下面是一个例子,ETL分别代表这三个步骤:

小技巧

  1. 如果从云端或者多个来源读取数据,很显然并行读取可以提升读取效率,这个操作可以通过简单的num_parallel_reads参数来完成,如:tf.data.TFRecordDataset(files, num_parallel_reads=32)
  2. 利用contrib模块的一些函数,提高数据transform阶段的速度,这些函数可以将transform阶段的多个不同操作融合到一起来做,以提高运行效率,如:
dataset = dataset.apply(tf.contrib.data.shuffle_and_repeat(10000, NUM_EPOCHS))
dataset = dataset.apply(tf.contrib.data.map_and_batch(lambda x: ...., BATCH_SIZE))
  1. 利用GPU prefetch提前吧数据在使用前加载到GPU
dataset = dataset.apply(tf.contrib.data.prefetch_to_device('\gpu:0'))
  1. dataset中的数据可以通过生成迭代器来访问,如:
iterator = dataset.make_one_shot_iterator()
data = iterator.get_next()
  1. 如果对数据的效率要求比较高,或者数据集很大,建议使用TFRecord等数据类型读取数据

2. 灵活

  1. 通过dataset.map函数可以对每条数据做自定义的transform
  2. 有一个接口Dataset.from_generator()可以把原本已经写好的python的读取数据集的函数包在里面,得到Tensorflow的数据集。

3. 易用

  1. 在tf.enable_eager_execution()模式下,dataset可以被看做简单的python可迭代对象,通过for..in..来访问,并且这种模式依然是支持prefetch_to_device的
  2. 可以用一个函数打包上述所说的载入数据的三个步骤:
tf.contrib.data.make_batched_features_dataset(file_pattern, BATCH_SIZE, features, num_epochs=NUM_EPOCHS)
  1. tf.data和最新的高级API Estimator有着很好的兼容性,只要生成了数据,就可以直接灌数据而不需要任何的迭代器什么的。

关于tf.data的Example

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容