1. 统计一小时的pv 统计访问量
1.1标题思路就是:[ 数据分类排序----->分类-----> 开窗一小时----->统计]
1.2 代码如下:
package com.wudl.examples;
import com.wudl.bean.UserBehavior;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
/**
* @ClassName : PvHour
* @Description : 一小时 页面的点击量是多少
* 实现思路 - 先 设置wartemark 时间, 然后在进行开窗多久(例如一小时), 然后 对一小时中的数据进行统计
* @Author :wudl
* @Date: 2020-11-12 22:41
*/
public class PvHour {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 从文件中或者从kafka 中进行读取
// -- 假如先从文件中读取
SingleOutputStreamOperator<UserBehavior> operator = env.readTextFile("D:\\ideaWorkSpace\\learning\\Flinklearning\\wudl-flink-java\\input\\UserBehavior.csv").map(new MapFunction<String, UserBehavior>() {
@Override
public UserBehavior map(String s) throws Exception {
String[] datas = s.split(",");
return new UserBehavior(Long.valueOf(datas[0]), Long.valueOf(datas[1]), Integer.valueOf(datas[2]), datas[3], Long.valueOf(datas[4]));
}
})
// 设置watermark
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<UserBehavior>() {
@Override
public long extractAscendingTimestamp(UserBehavior element) {
// Flink 中都是毫秒 , 所以乘以1000L
return element.getTimestamp() * 1000L;
}
});
// 实现pv 的统计
// 转化为元祖
SingleOutputStreamOperator<UserBehavior> userBehaviorFilter = operator.filter(data -> "pv".equals(data.getBehavior()));
// 转换成 二元组 (pv,1)
SingleOutputStreamOperator<Tuple2<String, Integer>> pvTuple = userBehaviorFilter.map(new MapFunction<UserBehavior, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(UserBehavior userBehavior) throws Exception {
return Tuple2.of("pv", 1);
}
});
// 按照第一个位置的元素 分组 => 聚合算子只能在分组之后调用,也就是 keyedStream才能调用 sum
KeyedStream<Tuple2<String, Integer>, Tuple> tupleKeyedStream = pvTuple.keyBy(0);
// 开窗
WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> windowedStream = tupleKeyedStream.timeWindow(Time.hours(1));
// 求和
SingleOutputStreamOperator<Tuple2<String, Integer>> sum = windowedStream.sum(1);
// 打印
sum.print();
env.execute();
}
}
1.3执行结果如下: