基于深度学习的目标检测入门:Faster R-CNN,YOLO,SSD

在学习深度学习的过程中,经常弹出不同的算法名称,同样是做目标检测的,每篇论文给出了不同的方式,这些算法之间到底有什么区别?目标检测算法有哪些?

image.png

图片分类

给一张图片,预测这张图片中的对象是什么,就是图片分类。当我们创建了一个狗的分类器,拿一张狗的照片,然后预测照片的分类:

image.png

如果当狗和猫都出现在照片中呢?

image.png

我们的模型会预测出什么结果?

我们可以训练一个多标签的分类器,可以同时预测猫和狗的分类。但是我们仍然不知道猫和狗的位置在哪里。

image.png

预测对象的位置,同时预测对象的种类就叫做目标检测。需要几个关键信息:

  • 对象种类
  • 包含对象边界的左上角x坐标
  • 包含对象边界的左上角y坐标
  • 对象的宽度
  • 对象的高度

目标检测被定义为一种分类问题,我们可以从任意位置,在输入图片中选取固定大小的窗口,然后把这些图片区域交给分类器进行处理。

img

每一个窗口中都可以预测到对象的种类,但是我们如何决定对象的大小是多少呢?包含对象的窗口大小为多少才是合适的?

image.png

我们可以看到对象的大小在图片中是有区别的,如何解决图片大小不一致的问题呢?通过缩放图片形成一种图片金字塔的方式。

通过多种不同的倍数,缩放图片,然后统计完全包含对象大小的窗口。

Idea is that we resize the image at multiple scales and we count on the fact that our chosen window size will completely contain the object in one of these resized images

image.png

目标检测

  • HOG (Histogram of oriented gradient) 方向梯度直方图是在计算机视觉和图像处理中被广泛使用的一种算法,在2005年被提出。

Region-based Convolutional Neural Networks(R-CNN) ==> Spatial Pyramid Pooling(SPP-net) ==> Fast R-CNN ==> Faster R-CNN

image.png

最后

当前对深度学习相关理论理解的还不够透彻,后面针对使用到的算法再深入学习每种算法的细节内容

参考

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容