python动态规划及编辑距离计算实例

动态规划的三要素:最优子结构,边界和状态转移函数,最优子结构是指每个阶段的最优状态可以从之前某个阶段的某个或某些状态直接得到(子问题的最优解能够决定这个问题的最优解),边界指的是问题最小子集的解(初始范围),状态转移函数是指从一个阶段向另一个阶段过度的具体形式,描述的是两个相邻子问题之间的关系(递推式)

  重叠子问题,对每个子问题只计算一次,然后将其计算的结果保存到一个表格中,每一次需要上一个子问题解时,进行调用,只要o(1)时间复杂度,准确的说,动态规划是利用空间去换取时间的算法.

  判断是否可以利用动态规划求解,第一个是判断是否存在重叠子问题。

爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2

输出: 2

解释: 有两种方法可以爬到楼顶。

1.  1 阶 + 1 阶

2.  2 阶

示例 2:

输入: 3

输出: 3

解释: 有三种方法可以爬到楼顶。

1.  1 阶 + 1 阶 + 1 阶

2.  1 阶 + 2 阶

3.  2 阶 + 1 阶

分析:

假定n=10,首先考虑最后一步的情况,要么从第九级台阶再走一级到第十级,要么从第八级台阶走两级到第十级,因而,要想到达第十级台阶,最后一步一定是从第八级或者第九级台阶开始.也就是说已知从地面到第八级台阶一共有X种走法,从地面到第九级台阶一共有Y种走法,那么从地面到第十级台阶一共有X+Y种走法.

即F(10)=F(9)+F(8)

分析到这里,动态规划的三要素出来了.

边界:F(1)=1,F(2)=2

最优子结构:F(10)的最优子结构即F(9)和F(8)

状态转移函数:F(n)=F(n-1)+F(n-2)

class Solution(object):

    def climbStairs(self, n):

        """

        :type n: int

        :rtype: int

        """

        if n<=2:

            return n

        a=1  #边界

        b=2  #边界

        temp=0

        for i in range(3,n+1):

            temp=a+b    #状态转移

            a=b        #最优子结构

            b=temp      #最优子结构

        return temp

利用动态规划的思想计算编辑距离。

编辑距离是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。通常来说,编辑距离越小,两个文本的相似性越大。这里的编辑操作主要包括三种:

插入:将一个字符插入某个字符串;

删除:将字符串中的某个字符删除;

替换:将字符串中的某个字符替换为另外一个字符。

那么,如何用Python计算编辑距离呢?我们可以从较为简单的情况进行分析。

当两个字符串都为空串,那么编辑距离为0;

当其中一个字符串为空串时,那么编辑距离为另一个非空字符串的长度;

当两个字符串均为非空时(长度分别为 i 和 j ),取以下三种情况最小值即可:

1、长度分别为 i-1 和 j 的字符串的编辑距离已知,那么加1即可;

2、长度分别为 i 和 j-1 的字符串的编辑距离已知,那么加1即可;

3、长度分别为 i-1 和 j-1 的字符串的编辑距离已知,此时考虑两种情况,若第i个字符和第j个字符不同,那么加1即可;如果相同,那么不需要加1。

很明显,上述算法的思想即为动态规划

求长度为m和n的字符串的编辑距离,首先定义函数——edit(i, j),它表示第一个长度为i的字符串与第二个长度为j的字符串之间的编辑距离。动态规划表达式可以写为:

if i == 0 且 j == 0,edit(i, j) = 0

if (i == 0 且 j > 0 )或者 (i > 0 且j == 0),edit(i, j) = i + j

if i ≥ 1 且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + d(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,d(i, j) = 1;否则,d(i, j) = 0。

def edit_distance(word1, word2):

    len1 = len(word1)

    len2 = len(word2)

    dp = np.zeros((len1 + 1,len2 + 1))

    for i in range(len1 + 1):

        dp[i][0] = i   

    for j in range(len2 + 1):

        dp[0][j] = j


    for i in range(1, len1 + 1):

        for j in range(1, len2 + 1):

            delta = 0 if word1[i-1] == word2[j-1] else 1

            dp[i][j] = min(dp[i - 1][j - 1] + delta, min(dp[i-1][j] + 1, dp[i][j - 1] + 1))

    return dp[len1][len2]

edit_distance('牛奶','华西奶')

结果:2

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • LIS问题 连续子数组最大和[https://leetcode-cn.com/problems/lian-xu-z...
    做一只有趣的芦苇阅读 284评论 0 0
  • 一 、动态规划(Dynamic Programming) 动态规划是解决优化问题的最强大的设计技术。 分治法将问题...
    leon_kbl阅读 441评论 0 0
  • 32.真情无价 和阿宁的事情似乎是草率的,不合情理的分离。这怎能不让人伤感万分。 为了调整自己,也是为了宝姗,我终...
    华芳国阅读 399评论 0 0
  • 前言 今天看了Stanford编辑距离代码,感觉写得不错,写一篇博客记录下。 编辑距离的定义是:从字符串A到字符串...
    nlpjoe阅读 7,612评论 2 5
  • 推荐指数: 6.0 书籍主旨关键词:特权、焦点、注意力、语言联想、情景联想 观点: 1.统计学现在叫数据分析,社会...
    Jenaral阅读 5,759评论 0 5