Kaggle-Digit Recognizer kNN解决方案

一、题目

https://www.kaggle.com/c/digit-recognizer

二、kNN算法

请参考https://www.jianshu.com/p/dddd1c348553

三、代码

编程语言使用python 3.6

from numpy import *
import operator
import csv
import pdb

def toInt(array):
    array=mat(array)
    m,n=shape(array)
    newArray=zeros((m,n))
    for i in range(m):
        for j in range(n):
                newArray[i,j]=int(array[i,j])
    return newArray
    
def nomalizing(array):
    m,n=shape(array)
    for i in range(m):
        for j in range(n):
            if array[i,j]!=0:
                array[i,j]=1
    return array
    
def loadTrainData():
    l=[]
    with open('train.csv') as file:
         lines=csv.reader(file)
         for line in lines:
             l.append(line) #42001*785
    l.remove(l[0])  # remove row 0, get 42000*785
    l=array(l)      # transfer list to array
    label=l[:,0]    # 从0行0列取到最后一行0列, 显示为1行42000列,而不是42000行1列
    data=l[:,1:]    # from row 0 to the last row, from col 1 to the last col, 42000*784
    return nomalizing(toInt(data)),toInt(label)  #data 42000*784   label 1*42000  
    
def loadTestData():
    l=[]
    with open('test.csv') as file:
         lines=csv.reader(file)
         for line in lines:
             l.append(line)
     #28001*784
    l.remove(l[0]) #28000*784
    data=array(l)
    return nomalizing(toInt(data))  #  data 28000*784

def loadTestResult():
    l=[]
    with open('knn_benchmark.csv') as file:
         lines=csv.reader(file)
         for line in lines:
             l.append(line)
     #28001*2
    l.remove(l[0]) #28000*2
    label=array(l)  
    return toInt(label[:,1])  #  label 1*28000

#inX:1*n  dataSet:m*n   labels:m*1  
def classify(inX, dataSet, labels, k): 
    inX=mat(inX)
    dataSet=mat(dataSet)
    labels=mat(labels)
    dataSetSize = dataSet.shape[0]                  
    diffMat = tile(inX, (dataSetSize,1)) - dataSet   
    sqDiffMat = array(diffMat)**2
    sqDistances = sqDiffMat.sum(axis=1)                  
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()            
    classCount={}                                      
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i],0]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def saveResult(result):
    with open('result.csv', 'w', newline = '') as myFile:    
        myWriter=csv.writer(myFile)
        for i in result:
            tmp=[]
            tmp.append(i)
            myWriter.writerow(tmp)
        

def Test():
    trainData,trainLabel=loadTrainData()
    testData=loadTestData()
    testLabel=loadTestResult()
    m,n=shape(testData)
    errorCount=0
    resultList=[]
    for i in range(m):
        print ("classify: ",i)

        classifierResult = classify(testData[i], trainData[0:20000], trainLabel.transpose()[0:20000], 5)
        resultList.append(classifierResult)
        print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, testLabel[0,i]))
        if (classifierResult != testLabel[0,i]): 
            errorCount += 1.0
        print ("\nthe total number of errors is: %d" % errorCount)
        print ("\nthe total error rate is: %f" % (errorCount/float(m)))
    saveResult(resultList)

运行程序:
打开cmd窗口,进入上述代码knn.py所在的目录,进入python环境
执行命令

import knn
knn.Test()
execute.png

运行结果:

result.png

四、Github代码下载

下载地址

五、参考

https://blog.csdn.net/u012162613/article/details/41929171


了解小朋友学编程请加QQ307591841(微信与QQ同号),或QQ群581357582。
关注公众号请扫描二维码


qrcode_for_kidscode_258.jpg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容