R|TCGA|m6AlncRNA

m6A相关的lncRNA怎么进行计算?下面我们就来探究下

1.表达矩阵下载

UCSC Xena是University of California开发的针对多个数据库的综合网站,上面有针对TCGA数据库整理好的RNA-seq表达矩阵。

网址:http://xena.ucsc.edu/

常用的数据是FPKM,可以转换为TPM。

image.png

注意:

  • 1.FPKM是log2(FPKM+1)

  • 2.基因注释版本是gencode.v22.annotation

  • 3.表达矩阵是ENSG格式

2.区分mRNA和lncRNA

打开GENCODE中gtf文件的biotype的说明,可以发现lncRNA包含9种类型。

对lncRNA的说明:

Generic long non-coding RNA biotype that replaced the following biotypes: 3prime_overlapping_ncRNA, antisense, bidirectional_promoter_lncRNA, lincRNA, macro_lncRNA, non_coding, processed_transcript, sense_intronic and sense_overlapping.

# 读取并探索gtf文件
gtf <- rtracklayer::import("D:/jianshu/R-TCGA-m6AlncRNA/gencode.v22.annotation.gtf")
gtf <- as.data.frame(gtf)
head(gtf,6)
##   seqnames start   end width strand source       type score phase
## 1     chr1 11869 14409  2541      + HAVANA       gene    NA    NA
## 2     chr1 11869 14409  2541      + HAVANA transcript    NA    NA
## 3     chr1 11869 12227   359      + HAVANA       exon    NA    NA
## 4     chr1 12613 12721   109      + HAVANA       exon    NA    NA
## 5     chr1 13221 14409  1189      + HAVANA       exon    NA    NA
## 6     chr1 12010 13670  1661      + HAVANA transcript    NA    NA
##             gene_id                          gene_type gene_status gene_name
## 1 ENSG00000223972.5 transcribed_unprocessed_pseudogene       KNOWN   DDX11L1
## 2 ENSG00000223972.5 transcribed_unprocessed_pseudogene       KNOWN   DDX11L1
## 3 ENSG00000223972.5 transcribed_unprocessed_pseudogene       KNOWN   DDX11L1
## 4 ENSG00000223972.5 transcribed_unprocessed_pseudogene       KNOWN   DDX11L1
## 5 ENSG00000223972.5 transcribed_unprocessed_pseudogene       KNOWN   DDX11L1
## 6 ENSG00000223972.5 transcribed_unprocessed_pseudogene       KNOWN   DDX11L1
##   level          havana_gene     transcript_id
## 1     2 OTTHUMG00000000961.2              <NA>
## 2     2 OTTHUMG00000000961.2 ENST00000456328.2
## 3     2 OTTHUMG00000000961.2 ENST00000456328.2
## 4     2 OTTHUMG00000000961.2 ENST00000456328.2
## 5     2 OTTHUMG00000000961.2 ENST00000456328.2
## 6     2 OTTHUMG00000000961.2 ENST00000450305.2
##                      transcript_type transcript_status transcript_name   tag
## 1                               <NA>              <NA>            <NA>  <NA>
## 2               processed_transcript             KNOWN     DDX11L1-002 basic
## 3               processed_transcript             KNOWN     DDX11L1-002 basic
## 4               processed_transcript             KNOWN     DDX11L1-002 basic
## 5               processed_transcript             KNOWN     DDX11L1-002 basic
## 6 transcribed_unprocessed_pseudogene             KNOWN     DDX11L1-001 basic
##   transcript_support_level    havana_transcript exon_number           exon_id
## 1                     <NA>                 <NA>        <NA>              <NA>
## 2                        1 OTTHUMT00000362751.1        <NA>              <NA>
## 3                        1 OTTHUMT00000362751.1           1 ENSE00002234944.1
## 4                        1 OTTHUMT00000362751.1           2 ENSE00003582793.1
## 5                        1 OTTHUMT00000362751.1           3 ENSE00002312635.1
## 6                       NA OTTHUMT00000002844.2        <NA>              <NA>
##           ont protein_id ccdsid
## 1        <NA>       <NA>   <NA>
## 2        <NA>       <NA>   <NA>
## 3        <NA>       <NA>   <NA>
## 4        <NA>       <NA>   <NA>
## 5        <NA>       <NA>   <NA>
## 6 PGO:0000019       <NA>   <NA>

需要的列有:

gene_id:与TCGA数据ENSG格式是一致的

gene_type:区分lncRNA

gene_name:即gene symbol

type:区分gene和其他类型,gene只有60483个

table(gtf$type)
## 
##           gene     transcript           exon            CDS    start_codon 
##          60483         198442        1172082         699443          82228 
##     stop_codon            UTR Selenocysteine 
##          74337         276542            114
if(!file.exists("D:/jianshu/R-TCGA-m6AlncRNA/gtf_gene.Rdata")){
library(tidyverse)
gtf_gene <- gtf[gtf$type=="gene",] %>% #提取type为gene的行
  select(gene_id,gene_name,gene_type)
gtf_mRNA <- gtf_gene[gtf_gene$gene_type=="protein_coding",] #提取mRNA

lnc = c("3prime_overlapping_ncRNA", "antisense", "bidirectional_promoter_lncRNA", "lincRNA", "macro_lncRNA", "non_coding", "processed_transcript", "sense_intronic" , "sense_overlapping")
gtf_lncRNA <- gtf_gene[gtf_gene$gene_type %in% lnc,]
save(gtf_mRNA,gtf_lncRNA,file = "D:/jianshu/R-TCGA-m6AlncRNA/gtf_gene.Rdata")
}

3. m6A和lncRNA求相关性

  • 分别提取m6A基因表达矩阵、lncRNA表达矩阵

  • 删除正常样品

  • 相关性检验: ** a.检测lncRNA sd是否大于0.1; ** b.检验lncRNA 在正常与肿瘤组间是否有差异; ** b.判断p.value是否小于0.05; ** c.判断相关系数(cor)是否大于阈值

rm(list = ls())
library(limma)
corFilter=0.4 #设置相关系数阈值
pvalueFilter=0.001 #设置p值过滤标准

# lncRNA数据处理
rt <- data.table::fread("D:/jianshu/R-TCGA-m6AlncRNA/lncRNA.txt",data.table = F)
rt <- as.matrix(rt) #变为matrix
rownames(rt) <- rt[,1]
exp <- rt[,2:ncol(rt)]
dimnames <- list(rownames(exp),colnames(exp))
data <- matrix(as.numeric(as.matrix(exp)),nrow=nrow(exp),dimnames = dimnames)
data <- avereps(data)
data <- data[rowMeans(data)>0.1,] #去掉数值比较小的lncRNA

library(tidyverse)
lncRNA <- data[,str_sub(colnames(data),14,15)<10]

# m6A数据处理
rt1 <- data.table::fread("D:/jianshu/R-TCGA-m6AlncRNA/m6aGeneExp.txt",data.table = F)
rt1 <- as.matrix(rt1) #变为matrix
rownames(rt1) <- rt1[,1]
exp1 <- rt1[,2:ncol(rt1)]
dimnames1 <- list(rownames(exp1),colnames(exp1))
m6A <- matrix(as.numeric(as.matrix(exp1)),nrow=nrow(exp1),dimnames = dimnames1)
m6A <- avereps(m6A)
m6A <- m6A[rowMeans(m6A)>0.1,] #去掉数值比较小的lncRNA

m6A <- m6A[,str_sub(colnames(m6A),14,15)<10]

# m6A和lncRNA相关性检验
sampleType <- c(rep(1,ncol(data[,str_sub(colnames(data),14,15)>10])),
                rep(2,ncol(data[,str_sub(colnames(data),14,15)<10])))
outTab=data.frame()
for(i in row.names(lncRNA)){
    if(sd(lncRNA[i,])>0.1){
        test=wilcox.test(data[i,] ~ sampleType)
        if(test$p.value<0.05){
            for(j in row.names(m6A)){
                x=as.numeric(lncRNA[i,])
                y=as.numeric(m6A[j,])
                corT=cor.test(x,y)
                cor=corT$estimate
                pvalue=corT$p.value
                if((cor>corFilter) & (pvalue<pvalueFilter)){
                    outTab=rbind(outTab,cbind(m6A=j,lncRNA=i,cor,pvalue,Regulation="postive"))
                }
                if((cor< -corFilter) & (pvalue<pvalueFilter)){
                    outTab=rbind(outTab,cbind(m6A=j,lncRNA=i,cor,pvalue,Regulation="negative"))
                }
            }
        }
    }
}
write.table(outTab,file = "D:/jianshu/R-TCGA-m6AlncRNA/m6AlncRNA-network.txt",sep = "\t",quote = F,col.names = F)

参考文献:
从TCGA表达矩阵中分别提取mRNA和lncRNA→生信星球(公众号)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容