API - 特征工程 - 读Excel、CSV

API官方文档:

\color{red}{读取Excel文件} pandas.read_excel
\color{red}{读取CSV文件} pandas.read_csv

一、读取Excel文件

excel_countif

1、sheet_name表格的小表名

stu_info = pd.read_excel('student_info1.xlsx',sheetname='countif').head(2)
stu_info.columns.name='学科'
stu_info

2、 把哪一列当作行索引 index_col

stu_info = pd.read_excel('student_info1.xlsx',
  sheetname='countif',index_col=0).head(2)
stu_info.columns.name='学科'
stu_info

3、 set_index("列名") 更改某一列为行索引

stu_info.set_index='学号'
stu_info

4、 reset_index(drop=True) 重置行索引,并把行索引转换为数据列
drop=True 不想要学号,即把行索引数据删除

stu_info.reset_index(drop=True)

二、读取csv文件

csv文件可以用写字板打开

1、读取csv文件

stu_info = pd.read_csv('student_info1.csv')
stu_info

2、 从第I行开始作为列索引
header=None或数字
NONE 说明文件里面没有设置列索引,不把第一行当索引了
0,1 行当索引。默认是第0行

stu_info = pd.read_csv('student_info1.csv',header=1)
stu_info

3、 加列索引

stu_info = pd.read_csv('student_info1.csv',header=1,names=['语文','数学','英语'])
stu_info

4、编码 、解析引擎
encoding 编码 默认utf-8 Windows新建文件,gb2312,gbk
engine 解析引擎 c比较快 python支撑更多方法

stu_info = pd.read_csv('student_info1.csv',encoding='utf-8',engine='python')

\color{red}{使用案例}


01_家庭用电预测:线性回归算法(时间与功率&功率与电流之间的关系

如果没有混合类型的数据的时候,可以通过low_memory=False调用更多内存,提高读取速度。 混合类型

sep=';' 以';'分隔每行的数据。

path1 = 'datas/household_power_consumption_1000.txt'
df = pd.read_csv(path1, sep=';', low_memory=False)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353