利用矩阵进行坐标系转换

原文链接

首先review一下矩阵的基础知识:

m×n 矩阵是排列在 m 行和 n 列中的一系列数。下图显示几个矩阵。

可以通过将单个元素相加来加合两个尺寸相同的矩阵。下图显示了两个矩阵相加的示例。

m×n 矩阵可与一个 n×p 矩阵相乘,结果为一个 m×p 矩阵。第一个矩阵的列数必须与第二个矩阵的行数相同。例如,一个 4×2 矩阵与一个 2×3 矩阵相乘,产生一个 4×3 矩阵。

矩阵的行列的平面点可视为矢量。例如,(2, 5) 是具有两个组件的矢量,(3, 7, 1) 是具有三个组件的矢量。两个矢量的点积定义如下:

(a, b) • (c, d) = ac + bd
(a, b, c) • (d, e, f) = ad + be + cf

例如,(2, 3) 和 (5, 4) 的点积是 (2)(5) + (3)(4) = 22。(2, 5, 1) 和 (4, 3, 1) 的点积是 (2)(4) + (5)(3) + (1)(1) = 24。请注意,两个矢量的点积是数字,而不是另一个矢量。另外请注意,只有当两个矢量的组件数相同时,才能计算点积。

将 A(i, j) 作为矩阵 A 中第 i 行、第 j 列的项。例如,A(3, 2)是矩阵 A 中第 3 行、第 2 列的项。假定 A、B 和 C 是矩阵,且 AB = C,则 C 的项计算如下:

C(i, j) =(A 的第 i 行)•(B 的第 j 列)


下图显示了矩阵相乘的几个示例。

以第二个等式为例,假设等式两边的矩阵分别是a、b、c,1 * 3的矩阵和3 * 2的矩阵相乘,得到的结果为1 * 2的矩阵。
其中c[0][0] = a[0][0] * b[0][0]+a[0][1] * b[1][0]+a[0][2] * b[2][0],c[0][1]=a[0][0] * b[0][1]+a[0][1] * b[1][1]+a[0][2] * b[2][1]。

矩阵的加法、乘法,可以用来做坐标转换。我们通常使用3 * 3(如果不需要旋转,则2*2的矩阵即可)的矩阵来做平面上的各种坐标转换,包括x/y轴的平移、旋转。现在来看一个简单的坐标系转换的例子:假设我们的客户区分辨率是100 * 100,要在客户区中心点画一个点,这个点的坐标是(x, y)。现在如果我们调整了客户区分辨率为400 * 300,此时如果还需要保持这个点的相对位置不变,计算他的坐标应该是(x * 400 / 100, y * 300 / 100)。这个计算过程很简单,那么用矩阵操作应该如何来实现呢?

我们将这个点视为一个1 * 2的矩阵,将其乘以一个2 * 2的矩阵,得出的仍然是一个1 * 2的矩阵,就是新的坐标了。由于屏幕分辨率在x、y轴分别扩大为原来的4倍和3倍,那么我们只要将点的x、y轴坐标都扩大到原来的4、3倍即可。公式如下:

等式左边的第二个矩阵,就是用来实现坐标转换的矩阵。其中b[0][0]就是x轴的扩大倍数,b[1][1]就是在y轴上的扩大倍数。这里面b[0][1]和b[1][0]永远是0。坐标系的这种转换,叫做线性变换。

OK。看完这个例子,是不是觉得用矩阵比直接计算还麻烦?嗯,对于这种简单的情况是这样的。不过别急,继续看坐标系旋转的情况,如果现在要求这个客户区逆时针旋转30度,要保持这个点的相对位置不变,他的新坐标应该是多少呢?

普通的计算的公式就不陈述了,这就是个初中几何题目。我们直接来看怎样通过矩阵操作实现。首先看公式:在二维空间中,旋转可以用一个单一的角 θ 定义。作为约定,正角表示逆时针旋转。关于原点逆时针旋转 θ 的矩阵是:

也就是说,逆时针旋转30度的新坐标就是:

当然,除此之外,坐标系还有平移,但是这个就简单了,只是一个简单的矩阵加法。比如(x, y)向右平移一个单位,用矩阵就是[x, y] + [1, 0]就是是(x + 1, y)。

下图显示了应用于点 (2, 1) 的几个变换:

前图中显示的所有变换都是线性变换。某些其他变换(如平移)不是线性的,不能表示为与 2×2 矩阵相乘的形式。假定您要从点 (2, 1) 开始,将其旋转 90 度,在 x 方向将其平移 3 个单位,在 y 方向将其平移 4 个单位。可通过先使用矩阵乘法再使用矩阵加法来完成此操作。

后面跟一平移(与 1×2 矩阵相加)的线性变换(与 2×2 矩阵相乘)称为仿射变换,如上图所示。放射变换(先乘后加)可以通过乘以一个3*3的矩阵来实现,若要使其起作用,平面上的点必须存储于具有虚拟第三坐标的 1×3 矩阵中。通常的方法是使所有的第三坐标等于 1。例如,矩阵 [2 1 1] 代表点 (2, 1)。下图演示了表示为与单个 3×3 矩阵相乘的仿射变换(旋转 90 度;在 x 方向上平移 3 个单位,在 y 方向上平移 4 个单位):

在前面的示例中,点 (2, 1) 映射到了点 (2, 6)。请注意,3×3 矩阵的第三列包含数字 0,0,1。对于仿射变换的 3×3 矩阵而言,情况将总是如此。重要的数字是列 1 和列 2 中的 6 个数字。矩阵左上角的 2×2 部分表示变换的线性部分,第 3 行中的前两项表示平移。

在使用3 * 3的矩阵做仿射变换时候,表示点的矩阵变成了一个1 * 3矩阵,这个矩阵中的最后一个值(a[0][2])必须设置成1。对于3 * 3矩阵b,其最后一列的值是多少是没有关系的,因为他们不会影响结果中的前两列。不过如上,经常将他们设置为0,0,1。这一列对于坐标转换的结果并没有任何影响,但是他们是必须的,因为矩阵相乘必须满足开篇所讲的“相乘的两个矩阵第一个矩阵的列数必须与第二个矩阵的行数相同”。


矩阵类“Matrix”

在.Net Framework中,又一个矩阵类“Matrix”。其内置了点坐标转换(TransformPoints)、平移(Translate)、缩放(Scale)、旋转(Rotate)方法。下面的示例创建了复合变换(先旋转 30 度,再在 y 方向上缩放 2 倍,然后在 x 方向平移 5 个单位)的矩阵:

Matrix myMatrix = newMatrix(); 
myMatrix.Rotate(30); 
myMatrix.Scale(1, 2, MatrixOrder.Append); 
myMatrix.Translate(5, 0, MatrixOrder.Append); 

除了Matrix类以外,.Net Framework中也有其他用于坐标系转换的类,比如System.Drawing.Graphics。具体用法请查阅相关文档。

以上只是利用矩阵进行平面坐标系转换的方法。如果是三位坐标系,也是可以利用矩阵来操作的,但Matrix类不行,因为其本身的定位就是“封装表示几何变换的 3 x 3 仿射矩阵”。


附上几个三维空间的旋转公式:

上面是分别绕单个轴旋转的公式。复杂的旋转可以通过这三个公式组合而成,任何 3 维旋转矩阵都可以用这三个角 θx, θy, 和 θz 来刻画,并且可以表示为 roll, pitch 和 yaw 矩阵的乘积。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容