经济学上有个“海盗分金”模型:是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,投票要超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。
第一个海盗的分配方案想要通过的关键是想办法联合后面的海盗,打压第二名。
具体规则如下:
抽签决定自己的号码(1, 2, 3, 4, 5)。
首先, 由1号提出分配方案, 然后大家5人进行表决, 当且仅当超过半数人同意时, 按照他的提案进行分配, 否则将被扔入大海喂鲨鱼
如果1号死后, 再由2号提出分配方案, 然后大家4人进行表决, 当且仅当超过半数的人同意时, 按照他的提案进行分配, 否则将被扔入大海喂鲨鱼。以此类推。
条件 : 每个海盗都是很聪明的人, 都能很理智的判断得失, 从而做出选择。
问题 : 第一个海盗提出怎样的分配方案才能使自己免于下海以及自己获得最多的金币呢?
解法
采用逆向归纳法, 从只剩下5号海盗开始分析。
如果只剩5号海盗,那么毫无疑问他将得到所有的金币而且不用牺牲,5号海盗没有任何风险。
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他只有支持3号才能绝对保证自身的性命 。
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。
但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。这样,2号就可以拿走98枚金币了。
这回轮到1号海盗,1号海盗经过一番推理之后也洞悉了2号的分配方案。他将采取的策略是放弃2号,而给3号1枚金币,同时给4号或5号2枚金币,即提出(97,0,1,2,0)或(97,0,1,0,2)的分配方案。由于1号的分配方案对于3号与4号或5号来说,相比2号的方案可以获得更多的利益,那么他们将会投票支持1号,再加上1号自身的1票,97枚金币就可轻松落入1号的腰包了。
当然,真实世界里,人肯定不会像数学算法一样精确的去考虑。在真实世界里,你要是(97,0,1,2,0)这样分,肯定分分钟喂鲨鱼了。但这并不妨碍我们通过这个案例,理解竞争力的合作策略。这个案例给我的一个启发就是,美国为什么扶持印度,为什么遏制中国。世界老大的地位被威胁时,团结其他对手,把老二弄下去,老大就安全了。