大家在刚开始搭建项目的时候可能考虑的不够全面,随着产品的推广 、业务场景的复杂和使用用户越来越多 数据会呈现快速增长。当数据达到千万级的时候 就会发现 查询速度越来越慢 用户体验也就越来越差,那怎样提升千万级数据查询效率呢?小萌简单整理了一下,希望对大家有所帮助!
优化数据库设计:
- 数据字段类型使用varchar/nvarchar 替换 char/nchar,变长字段存储空间小,节省存储空间。在查询的时候小的空间字段搜索效率更高。
- 查询的时候避免全表扫描,可以在where和order by 的字段上建立索引。
- where 查询子句中不对null值做判断,会导致检索引擎放弃使用索引而使用全表扫描,如:select id,name from user where age is null 可以设置age 的默认值为0,保证没有null值,修改后的sql查询语句为:select id,name from user where age = 0。
- 谨慎使用索引,索引不是越多越好。一般一张表的索引数不要超过6个,如果太多要讨论业务是否合理或者是否索引建在了不常用的字段上。索引可以提高select 查询的效率,但是也响应降低了 insert和update 的效率,因为在执行insert和update时也可能会重建索引。
- 尽量不要更新索引数据,因为索引数据的顺序是表记录的物理顺序,一旦发生改变将会导致整个表记的顺序发生改变,将会消耗大量资源。如果业务需要频繁更新索引数据列 就要考虑索引是否创建合理,比如 用户ID、身份证号码或者手机号码不经常改变的列可以考虑创建索引。
- 字符型字段如果符合业务需求可以修改为数字类型字段,因为字符型字段会降低查询和连接的性能,并且增加存储的开销。执行搜索的适合查询和连接会逐个比较字符串的每一个字符,如果是数据类型比对一次就可以了。
SQL查询优化
- where 查询语句中避免使用**!= 或<> **操作符,搜索引擎会执行全表扫描而不执行创建的索引。
- where 查询语句中 避免使用 or 来连接条件查询数据,也会导致搜索引擎执行全表扫描而不执行创建的索引,例如:select id,name from user where age = 18 or age = 25 可以修改为 select id,name from user where age = 18 union all select id,name from user where age = 25。
- ** in 和 not in也避免使用,也将导致全表扫描,例如:select id,name from user where age in (18,19,20)** 如果是连续的则可以考虑使用between and,例如:select id,name from user where age between 18 and 20。
- like 语句导致全表扫描,例如:select id,name from user where name like ‘%微信%’。
- wehre 查询语句中避免使用参数,也会全表扫描,SQL在运行时才会进行局部变量的解析,优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。如果编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id,name from user where age = @age 当然也可以改为强制使用索引:select id,name from user with(index(索引名)) where age =@ age
- where查询语句避免使用表达式,也会导致查询的时候放弃使用索引导致全表扫描。例select id,name from user where age/2 = 10 ** 可以更改为 ** select id,name from user where age = 102*。
- where查询语句避免使用函数操作,也会导致查询的时候放弃使用索引导致全表扫描。例如:select id,name from user where substring(name,1,3)=’abc’ 可以改为select id,name from user where name like ‘abc%’。
- 不要使用select * from user 查询,要用具体的字段名。不要返回任何用不到的字段。
- 不要使用游标,大家都知道游标的效率非常差。
- 避免出现大实务业务,会降低系统的并发能力。
Java后台优化
- 使用JDBC连接数据库。
- 合理使用数据缓存。
- 控制好内存,不要全部数据放到内出做处理,可以边读边处理。
- 少创造对象。
数据库性能优化
- 使用存储过程
如果在具体业务实现过程中,可以使用存储过程操作数据库可以尽量使用,由于存储过程是存放在数据库服务器上的一次性被设计、编码、测试,被再次调用,需要执行该存储过程可以很简单的使用。可以提高响应速度,减少网络使用流量等等。
- 硬件调整
影响数据库性能的也可能是磁盘和网络吞吐量,可以通过扩大虚拟内存,把数据库服务器和主服务器分开部署。数据服务器吞吐量调为最大。
- 调整数据库
如果在实际业务实现中对表查询频率过高,可以对表创建索引;按照where查询条件建立索引,尽量为整型键建立为有且只有一个簇集索引,数据在物理上按顺序在数据页上,缩短查找范围,为在查询经常使用的全部列建立非簇集索引,能最大地覆盖查询;但是索引不可太多,执行UPDATE DELETE INSERT语句需要用于维护这些索引的开销量急剧增加;避免在索引中有太多的索引键;避免使用大型数据类型的列为索引;保证每个索引键值有少数行。
跟多实战资讯请关注“IT实战联盟”公众号哦~~~