数据分析之回归、聚类、分类、关联分析、推荐算法


title: 数据分析之回归、聚类、分类、关联分析、推荐算法

参考文档:

前言

作为数据分析工程师,志在找出数据中的规律,并将规律提供给运营或者产品作参考。数据挖掘、数据存储、数据处理层、数据分析到最后的数据推送,这个流程就像冶炼矿石。

有的数据是富矿,像石油一样从各个地方产生涌出。举个例子,阿里的各个平台的数据:APP、网站、支付宝等,大量用户日志数据会被记录并存储下来,这一步就是数据挖掘。这一步数据是海量的,需要巨大的存储空间和即时处理能力,如实时处理和离线处理。然后数据会运送到第二层,数据处理层,数据处理层也是一些大数据团队重点布局的方向,这里有我们常见熟悉的Hadoop、Hive、HBase、Storm,虽然知道名词,但是不知其架构,这里涉及数据的实时处理和离线处理,主要是将数据打上标签,送给下一个层级:推荐系统,数据可能用到回归、聚类、分类、关联分析、用户画像,最终推荐系统输送给业务系统,业务系统就会以各种方式展现在客户端:如APP推送、千人千面首页、用户杀熟、系统推荐、甚至是数据预警(淘宝刷单美滋滋)。

这里我们只谈数据分析的几个核心方法:回归、聚类、分类、关联分析、推荐算法

聚类算法与应用

K-means是提出非常早, 使用非常频繁的聚类算法。
基本步骤

输入:N个样本、拟定的聚类个数K
初始化:随机初始化K个D维的向量 或 选取K个不同的样本点作为初始聚类中心
迭代直至收敛:
1. 对于每个样本xn都指定其为离其最近的聚类中心的cluster
2. 重新计算聚类中心

未完待续

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,639评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,093评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,079评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,329评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,343评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,047评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,645评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,565评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,095评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,201评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,338评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,014评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,701评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,194评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,320评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,685评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,345评论 2 358

推荐阅读更多精彩内容