大数据关键技术(三)—存储及管理技术

在前两篇我们讲到了,大数据采集与预处理技术,接下来,我们就来继续讲另一关键技术——大数据的存储和管理技术。

在大数据时代的背景下,海量的数据整理成为了各个企业急需解决的问题。

云计算技术、物联网等技术快速发展,多样化已经成为数据信息的一项显著特点,为充分发挥信息应用价值,有效存储已经成为人们关注的热点。

为了有效应对现实世界中复杂多样性的大数据处理需求,需要针对不同的大数据应用特征,从多个角度、多个层次对大数据进行存储和管理。


大数据面临的存储管理问题

存储规模大

大数据的一个显著特征就是数据量大,起始计算量单位至少是PB,甚至会采用更大的单位EB或ZB,导致存储规模相当大。

种类和来源多样化,存储管理复杂

目前,大数据主要来源于搜索引擎服务、电子商务、社交网络、音视频、在线服务、个人数据业务、地理信息数据、传统企业、公共机构等领域。

因此数据呈现方法众多,可以是结构化、半结构化和非结构化的数据形态,不仅使原有的存储模式无法满足数据时代的需求,还导致存储管理更加复杂。

对数据服务的种类和水平要求高

大数据的价值密度相对较低,以及数据增长速度快、处理速度快、时效性要求也高,在这种情况下如何结合实际的业务,有效地组织管理、存储这些数据以能从浩瀚的数据中,挖掘其更深层次的数据价值,需要亟待解决。

大规模的数据资源蕴含着巨大的社会价值,有效管理数据,对国家治理、社会管理、企业决策和个人生活、学习将带来巨大的作用和影响,因此在大数据时代,必须解决海量数据的高效存储问题。

我国大数据的存储及处理能力挑战

当前,我国大数据存储、分析和处理的能力还很薄弱,与大数据相关的技术和工具的运用也相当不成熟,大部分企业仍处于IT产业链的低端。

我国在数据库、数据仓库、数据挖掘以及云计算等领域的技术,普遍落后于国外先进水平。


在大数据存储方面,数据的爆炸式增长,数据来源的极其丰富和数据类型的多种多样,使数据存储量更庞大,对数据展现的要求更高。而目前我国传统的数据库,还难以存储如此巨大的数据量。

因此,如何提高我国对大数据资源的存储和整合能力,实现从大数据中发现、挖掘出有价值的信息和知识,是当前我国大数据存储和处理所面临的挑战。

大数据存储管理技术

近年来,企业也从大数据中受益,大幅度推动支出和投资,并允许他们与规模更大的企业进行竞争。

所有事实和数字的存储和管理逐渐变得更加容易。以下是有效存储和管理大数据的三种方式。

不断加密

任何类型的数据对于任何一个企业来说都是至关重要的,而且通常被认为是私有的,并且在他们自己掌控的范围内是安全的。

然而,黑客攻击经常被覆盖在业务故障中,最新的网络攻击活动在新闻报道不断充斥。因此,许多公司感到很难感到安全,尤其是当一些行业巨头经常成为攻击目标时。


随着企业为保护资产全面开展工作,加密技术成为打击网络威胁的可行途径。将所有内容转换为代码,使用加密信息,只有收件人可以解码。

如果没有其他的要求,则加密保护数据传输,增强在数字传输中有效地到达正确人群的机会。

仓库存储

大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。

因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。


然而,有些报告指出了反对这种方法的论据,指出即使是最大的存储中心,大数据的指数增长也不再能维持。


然而,在某些情况下,企业可能会租用一个仓库来存储大量数据,在大数据超出的情况下,这是一个临时的解决方案,而LCP属性提供了一些很好的机会。

毕竟,企业不会立即被大量的数据所淹没,因此,为物理机器租用仓库至少在短期内是可行的。这是一个简单有效的解决方案,但并不是永久的成本承诺。

备份服务 - 云端

除了所有技术的发展,大数据增长得更快,以这样的速度,世界上所有的机器和仓库都无法完全容纳它。


因此,由于云存储服务推动了数字化转型,云计算的应用越来越繁荣。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司(如谷歌云)将会更多地访问基本统计信息。


如果出现网络攻击,云端将以A迁移到B的方式提供独一无二的服务。

结论

目前原有的存储模式以及跟不上时代的步伐,无法满足数据时代的需求,导致信息处理技术无法承载信息的负荷量。

这就需要对数据的存储技术和存储模式进行创新与研究,跟上数字化存储的技术的发展步伐,给用户提供一个具有高质量的数据存储体验。

根据大数据的特点的每一种技术都各有所长,彼此都有各自的市场空间,在很长的一段时间内,满足不同应用的差异化需求。


但为了更好的满足大数据时代的各种非结构化数据的存储需求,数据管理和存储技术仍需进一步改进和发展

可能有些中小企业无法自己快速的获取自己的所需的数据进行分析,这就需要到了第三方的数据平台进行大数据分析

在这里,为大家介绍一款大数据采集平台——观向数据

观向数据是一款针对品牌商、零售商的线上运营数据分析系统,汇集全网多平台、多维度数据,形成可视化报表,为企业提供行业分析、渠道监控、数据包等服务,帮助企业品牌发展提供科学化决策。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容