1、索引概述
索引(index)
是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式指向数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
如下面的示意图所示 :
左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。
为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找快速获取到相应数据。
一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在磁盘上。索引是数据库中用来提高性能的最常用的工具。
画图分析:
2、索引的优势与劣势
优势:
1) 类似于书籍的目录索引,提高数据检索的效率,降低数据库的IO成本。
2) 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。
劣势
1) 实际上索引也是一张表,该表中保存了主键与索引字段,并指向实体类的记录,所以索引列也是要占用空间的。
2) 虽然索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE。因为更新表时,MySQL 不仅要保存数据,还要保存一下索引文件,每次更新添加了索引列的字段,都会调整因为更新所带来的键值变化后的索引信息。
3、索引结构
索引是在MySQL的存储引擎层中实现的,而不是在服务器层实现的。所以每种存储引擎的索引都不一定完全相同,也不是所有的存储引擎都支持所有的索引类型的。
MySQL目前提供了以下4种索引:
① BTREE 索引 : 最常见的索引类型,大部分索引都支持 B 树索引。
② HASH 索引:只有Memory引擎支持 , 使用场景简单 。
③ R-tree 索引(空间索引):空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少,不做特别介绍。
④ Full-text (全文索引) :全文索引也是MyISAM的一个特殊索引类型,主要用于全文索引,InnoDB从Mysql5.6版本开始支持全文索引。
MyISAM、InnoDB、Memory三种存储引擎对各种索引类型的支持:
我们平常所说的索引,如果没有特别指明,都是指B+树(多路搜索树,并不一定是二叉的)结构组织的索引。其中聚集索引、复合索引、前缀索引、唯一索引默认都是使用B+tree 索引,统称为索引。
3.1、BTREE 结构
BTree又叫多路平衡搜索树,一颗m叉的BTree特性如下:
树中每个节点最多包含m个孩子。
除根节点与叶子节点外,每个节点至少有[ceil(m/2)]个孩子。
若根节点不是叶子节点,则至少有两个孩子。
所有的叶子节点都在同一层。
每个非叶子节点由n个key与n+1个指针组成,其中[ceil(m/2)-1] <= n <= m-1
以5叉BTree为例,key的数量:公式推导[ceil(m/2)-1] <= n <= m-1。所以 2 <= n <=4 。当n>4时,中间节点分裂到父节点,两边节点分裂。
插入 C N G A H E K Q M F W L T Z D P R X Y S 数据为例。
演变过程如下:
1). 插入前4个字母 C N G A
2). 插入H,n>4,中间元素G字母向上分裂到新的节点
3). 插入E,K,Q不需要分裂
4). 插入M,中间元素M字母向上分裂到父节点G
5). 插入F,W,L,T不需要分裂
6). 插入Z,中间元素T向上分裂到父节点中
7). 插入D,中间元素D向上分裂到父节点中。然后插入P,R,X,Y不需要分裂
8). 最后插入S,NPQR节点n>5,中间节点Q向上分裂,但分裂后父节点DGMT的n>5,中间节点M向上分裂
到此,该BTREE树就已经构建完成了, BTREE树 和 二叉树 相比, 查询数据的效率更高, 因为对于相同的数据量来说,BTREE的层级结构比二叉树小,因此搜索速度快。
待续...