对动态规划仍然不熟,而且最近想掌握一下Go语言,所以用它来做一下算法题
题目
Given a square array of integers A, we want the minimum sum of a falling path through A.
A falling path starts at any element in the first row, and chooses one element from each row. The next row's choice must be in a column that is different from the previous row's column by at most one.
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12
Explanation:
The possible falling paths are:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
The falling path with the smallest sum is [1,4,7], so the answer is 12.
Note:
- 1 <= A.length == A[0].length <= 100
- -100 <= A[i][j] <= 100
题解
这道题是很简单的动态规划题,题目解析在注释里已经有了。
func minFallingPathSum(A [][]int) int{
//题目:二维数组,像水流一样降落(降落时不能隔开超过一列),求降落总和最大
//状态:当以 A[row][col] 结尾时的最大总和
rowNum := len(A)
colNum := len(A[0])
//构建二维数组
min := make([][]int, rowNum)
for i:=0; i<rowNum; i++{
min[i] = make([]int, colNum)
}
//计算min值
min[0] = A[0]
for row:=1; row<rowNum; row++{
for col:= 0; col<colNum; col++{
if col == 0{
switch{
case min[row-1][col] < min[row-1][col+1]:
min[row][col] = A[row][col] + min[row-1][col]
default:
min[row][col] = A[row][col] + min[row-1][col+1]
}
} else if col == colNum-1{
switch{
case min[row-1][col] < min[row-1][col-1]:
min[row][col] = A[row][col] + min[row-1][col]
default:
min[row][col] = A[row][col] + min[row-1][col-1]
}
} else{
switch{
case min[row-1][col-1] < min[row-1][col] && min[row-1][col-1] < min[row-1][col+1]:
min[row][col] = A[row][col] + min[row-1][col-1]
case min[row-1][col] < min[row-1][col+1]:
min[row][col] = A[row][col] + min[row-1][col]
default:
min[row][col] = A[row][col] + min[row-1][col+1]
}
}
}
}
result := min[rowNum-1][0]
for i:=1; i<colNum; i++{
if min[rowNum-1][i] < result{
result = min[rowNum-1][i]
}
}
return result
}