初识RNAseq

1 背景

细胞染色体中的基因并不是所有都是活跃表达的,只是只有一部分基因是可以表达,而表达的中间过程就要经历mRNA转录本,通过高通量测序,我们就能得知:哪些基因是活跃可以表达的,并且产生了多少转录本(也就是衡量基因表达量的指标)

图1

先将正常的细胞测一遍,再将变异的细胞测一遍,得到它们的表达量,我们后来就是比较它们的表达量差异

图2

可以看出,基因1在两组样本中差异不大或者没有差异;基因2在正常组中基本不表达,而在变异组中表达量很高,二者差别甚大;基因3有差别但比较小

2 RNA-seq步骤

Step1 构建测序文库

分离RNA=》将RNA打断成小片段=〉将小RNA片段反转录成DNA=》加接头

接头两个作用:测序仪识别;允许一台测序仪同时运行多个样本,提高性价比
但是需要注意:加接头的过程是随机的,并不是所有的接头都被加上,有些反转录的DNA片段没有加上接头

=》PCR扩增(只有加上接头的测序片段才能被扩增)=〉质量检查QC(看下文库的浓度和片段长度)


图3

对文库进行测序

在一块测序板上(术语Flowcell)可以包含超过4千万个片段,垂直于测序板排列。
目前采用的测序方式为illumina测序仪(NGS),测序仪有四种颜色的荧光探针A、T、C、G,与测序片段上碱基互补,结合上就“放烟花”表示庆祝🎉(就是闪一下自己带的荧光,比如A带红光,G带蓝光,C绿光,T橙光)。当然,这一切都逃不过测序仪自带的高精度照相机的法眼【测序仪为什么贵?就是在于它的高精度照相机,想想要分辨这么微小的亮光,密密麻麻,密集恐机症都犯了🤢】许许多多的测序片段中同一排的碱基测完了,就把原来荧光的那个碱基冲掉了,再放下一个荧光碱基进来结合、放光


图4

测序出来的结果即为raw data, 这就是fastq数据

Step2 原始数据的处理

质控=》过滤garbage reads=〉比对到参考基因组=》再数一下每个基因比对上多少reads

garbage reads:

有些时候接头并没有加到测序片段,而是他们直接结合,也能进行测序,但测得结果是没用的

比对到参考基因组

先将大的基因组序列打断成许多小片段,然后为了方便接下来寻找这些片段,需要对他们进行构建索引index(目的就是标注每个小片段的位置)
再将测序的reads和基因组一样,也是打断成小片段,然后把它的小片段比对到基因组的小片段上,比对上的会给出位置信息

图5

统计reads数得到表达矩阵

就想这样:第一列是基因名(人类基因组有大概2w基因,因此大概有2w行)
其他列是每个测序样本比对上的数量(6-成百上千不等),这里的6的考虑的是处理对照各3个重复,即Bulk-seq;大样本量的RNA-seq比如Single-cell,每个细胞都是一个样本,因此成百上千
每一行都是原始的统计值,每个基因在每个样本中被抓到多少次

图6

标准化表达矩阵

进行标准化的原因是:某些样本可能本身测序质量就差,但并不代表人家没东西;或者有的样本测序的时候加的浓度比较高,因此统计时占优势,但并不公平!
因此需要让大家在同一起跑线


图7

Step 3 结果可视化

比如PCA分析,看看样本之间能否区分开,另外可以排除明显不对的样本,比如这里的wt2

图8

然后看差异表达基因(就是正常与变异样本的差异)
红色是差异的,黑色是共同的
图8

如果发现了感兴趣的差异基因,怎么办?

  1. 这个基因是你研究的,接下来通过实验验证
  2. 对这个基因不熟悉,只是感兴趣,就可以做GO、KEGG注释,看看它在正常还是变异样本中有富集

[参考文献]
https://www.jianshu.com/p/d09e624efcab

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容