半个小时搭建自己的实时监控系统

首先给直观的看看监控效果图:


image.png

数据流架构如下所示,通过Flume采集日志数据,并写入到kafka中,Flink读取kafka数据经过处理后再次放入到kafka中,监控页面通过websocket监听kafka中数据实现实时的数据显示。


image.png

整体技术框架基于ruoyi单机版本搭建
新增加的文件如下:


image.png

第一步先启动Flume,Flume监听文件,我这里通过tail命令监听文件新写入的内容

./flume-ng agent -c /Users/dbq/Documents/middleware/flume/master/apache-flume-1.9.0-bin/conf -f /Users/dbq/Documents/middleware/flume/master/apache-flume-1.9.0-bin/conf/kafka.conf -n a1 -Dflume.root.logger=INFO,console

配置文件如下,Flume实时监控文件数据,并写入到kafka test 主题中

a1.sources = r1
a1.sinks = k1
a1.channels = c1
#对于source的配置描述 监听文件中的新增数据 exec
a1.sources.r1.type = exec
a1.sources.r1.command  = tail -F /Users/d/Documents/middleware/flume/data/log.00
a1.sources.ri.shell = /bin/sh -c
#对于sink的配置描述 使用kafka做数据的消费
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.topic = test
a1.sinks.k1.brokerList = 127.0.0.1:9092,127.0.0.1:9092,127.0.0.1:9092
a1.sinks.k1.requiredAcks = 1
a1.sinks.k1.batchSize = 5
#对于channel的配置描述 使用内存缓冲区域做数据的临时缓存
a1.channels.c1.type = memory

#通过channel c1将source r1和sink k1关联起来
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

第二步:系统启动的时候监听kafka topic,并通过Flink进行流式计算,Sink负责将处理后的数据输出到外部系统中。

@Component
public class Runner implements CommandLineRunner {
    @Override
    public void run(String... args) throws Exception {
        System.out.println("--------------");
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), getProperties());
        DataStream<String> dataStream = env.addSource(consumer);

        //模拟业务过程流式处理
        DataStream<String> after = dataStream.map((MapFunction<String, String>) s -> {
            MonitorObject mo = getMonitorObject(s);
            return JSON.toJSONString(mo);
        });
        after.addSink(new MySink());
        env.execute("spring flink demo");
    }

    /**
     * 模拟二次处理
     */
    private static MonitorObject getMonitorObject(String s) {
        MonitorObject mo = JSON.toJavaObject(JSON.parseObject(s), MonitorObject.class);
        mo.setOil(mo.getOil() % 2);
        mo.setSpeed(mo.getSpeed()%2);
        return mo;
    }

    private Properties getProperties() {
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("zookeeper.connect", "localhost:3181");
        properties.setProperty("group.id", "flink-group");
        properties.setProperty("auto.offset.reset", "latest");
        properties.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        return properties;

    }
}

第三步:sink中讲数据重新写入到kafka中,这里重写写入到kafka目的是起到平滑推送数据到前端页面的效果,也方便以广播的方式推送到其他业务系统,其他业务系统只需要订阅test_after主题,就可以获得Flink处理之后的数据

@Slf4j
@Component
public class MySink extends RichSinkFunction<String> {
    private AnnotationConfigApplicationContext ctx;

    private final static String topic = "test_after";

    public MySink() {
        log.info("mySink new");
    }

    @Override
    public void open(Configuration paramters) {
        this.ctx = new AnnotationConfigApplicationContext(Config.class);
        log.info("my sink open");
    }

    @Override
    public void invoke(String value, Context context) throws Exception {
        log.info("[flink监控kafka数据]:{}", value);

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        List<String> data = new ArrayList<>();
        data.add(value);

        DataStreamSource<String> source = env.fromCollection(data);
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(
                topic,
                (KafkaSerializationSchema<String>) (element, timestamp) -> new ProducerRecord<>(
                        topic,
                        element.getBytes()
                ),
                getProperties(),
                FlinkKafkaProducer.Semantic.NONE
        );
        //重新写入到kafka
        source.addSink(producer);
        env.execute();
    }

    @Override
    public void close() {
        ctx.close();
        log.info("my sink close");
    }

    private Properties getProperties() {
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("zookeeper.connect", "localhost:3181");
        properties.setProperty("group.id", "flink-group");
        properties.setProperty("auto.offset.reset", "latest");
        return properties;

    }

第四步:监听kafka,并通过websocket推送到前端页面

@Component
@Slf4j
public class KafkaConsumer {

    @KafkaListener(groupId = "3",topics = "test_after")
    public void listen(String msg){
        System.out.println("====================> " + msg);
        MonitorObject mo = JSON.toJavaObject(JSON.parseObject(msg), MonitorObject.class);
        WebSocketUsers.sendMessageToUsersByText(mo);
    }
}

其他代码
WebSocketConfig.java

@Configuration
public class WebSocketConfig
{
    @Bean
    public ServerEndpointExporter serverEndpointExporter()
    {
        return new ServerEndpointExporter();
    }
}

WebSocketServer.java

@Component
@ServerEndpoint("/websocket/message")
public class WebSocketServer
{
    /**
     * WebSocketServer 日志控制器
     */
    private static final Logger LOGGER = LoggerFactory.getLogger(WebSocketServer.class);

    /**
     * 默认最多允许同时在线人数100
     */
    public static int socketMaxOnlineCount = 100;

    private static Semaphore socketSemaphore = new Semaphore(socketMaxOnlineCount);

    /**
     * 连接建立成功调用的方法
     */
    @OnOpen
    public void onOpen(Session session) throws Exception
    {
        boolean semaphoreFlag = false;
        // 尝试获取信号量
        semaphoreFlag = SemaphoreUtils.tryAcquire(socketSemaphore);
        if (!semaphoreFlag)
        {
            // 未获取到信号量
            LOGGER.error("\n 当前在线人数超过限制数- {}", socketMaxOnlineCount);
//            WebSocketUsers.sendMessageToUserByText(session, "当前在线人数超过限制数:" + socketMaxOnlineCount);
            session.close();
        }
        else
        {
            // 添加用户
            WebSocketUsers.put(session.getId(), session);
            LOGGER.info("\n 建立连接 - {}", session);
            LOGGER.info("\n 当前人数 - {}", WebSocketUsers.getUsers().size());
//            WebSocketUsers.sendMessageToUserByText(session, "连接成功");
        }
    }

    /**
     * 连接关闭时处理
     */
    @OnClose
    public void onClose(Session session)
    {
        LOGGER.info("\n 关闭连接 - {}", session);
        // 移除用户
        WebSocketUsers.remove(session.getId());
        // 获取到信号量则需释放
        SemaphoreUtils.release(socketSemaphore);
    }

    /**
     * 抛出异常时处理
     */
    @OnError
    public void onError(Session session, Throwable exception) throws Exception
    {
        if (session.isOpen())
        {
            // 关闭连接
            session.close();
        }
        String sessionId = session.getId();
        LOGGER.info("\n 连接异常 - {}", sessionId);
        LOGGER.info("\n 异常信息 - {}", exception);
        // 移出用户
        WebSocketUsers.remove(sessionId);
        // 获取到信号量则需释放
        SemaphoreUtils.release(socketSemaphore);
    }

    /**
     * 服务器接收到客户端消息时调用的方法
     */
    @OnMessage
    public void onMessage(String message, Session session)
    {
        String msg = message.replace("你", "我").replace("吗", "");
        WebSocketUsers.sendMessageToUserByText(session, msg);
    }
}

WebSocketUsers.java

/**
 * websocket 客户端用户集
 * 
 * @author ruoyi
 */
public class WebSocketUsers
{
    /**
     * WebSocketUsers 日志控制器
     */
    private static final Logger LOGGER = LoggerFactory.getLogger(WebSocketUsers.class);

    /**
     * 用户集
     */
    private static Map<String, Session> USERS = new ConcurrentHashMap<String, Session>();

    /**
     * 存储用户
     *
     * @param key 唯一键
     * @param session 用户信息
     */
    public static void put(String key, Session session)
    {
        USERS.put(key, session);
    }

    /**
     * 移除用户
     *
     * @param session 用户信息
     *
     * @return 移除结果
     */
    public static boolean remove(Session session)
    {
        String key = null;
        boolean flag = USERS.containsValue(session);
        if (flag)
        {
            Set<Map.Entry<String, Session>> entries = USERS.entrySet();
            for (Map.Entry<String, Session> entry : entries)
            {
                Session value = entry.getValue();
                if (value.equals(session))
                {
                    key = entry.getKey();
                    break;
                }
            }
        }
        else
        {
            return true;
        }
        return remove(key);
    }

    /**
     * 移出用户
     *
     * @param key 键
     */
    public static boolean remove(String key)
    {
        LOGGER.info("\n 正在移出用户 - {}", key);
        Session remove = USERS.remove(key);
        if (remove != null)
        {
            boolean containsValue = USERS.containsValue(remove);
            LOGGER.info("\n 移出结果 - {}", containsValue ? "失败" : "成功");
            return containsValue;
        }
        else
        {
            return true;
        }
    }

    /**
     * 获取在线用户列表
     *
     * @return 返回用户集合
     */
    public static Map<String, Session> getUsers()
    {
        return USERS;
    }

    /**
     * 群发消息文本消息
     *
     * @param message 消息内容
     */
    public static void sendMessageToUsersByText(Object message)
    {
        Collection<Session> values = USERS.values();
        for (Session value : values)
        {
            sendMessageToUserByText(value, message);
        }
    }

    /**
     * 发送文本消息
     *
     * @param session 自己的用户名
     * @param message 消息内容
     */
    public static void sendMessageToUserByText(Session session, Object message)
    {
        if (session != null)
        {
            try
            {
                session.getBasicRemote().sendText(JSON.toJSONString(message));
            }
            catch (IOException e)
            {
                LOGGER.error("\n[发送消息异常]", e);
            }
        }
        else
        {
            LOGGER.info("\n[你已离线]");
        }
    }
}

前端代码

var url = "ws://127.0.0.1:80/websocket/message";
        var ws = new WebSocket(url);
        ws.onopen = function() {
            $('#text_content').append('已经打开连接!' + '\n');
        }
        ws.onmessage = function(event) {
            console.log(event.data)
            var obj = JSON.parse(event.data);
            gaugeChart.setOption({
                series : [
                    {
                        name: '速度',
                        data: [{value: obj.speed}]
                    },
                    {
                        name: '转速',
                        data: [{value: obj.rotate_speed}]
                    },
                    {
                        name: '油耗',
                        data: [{value: obj.oil}]
                    }
                ]
            })
        }

模拟数据的持续生成,这里每秒钟生成一条数据,以json格式写入到日志文件中

while true
do
 echo "{\"speed\":$((RANDOM %220)),\"rotate_speed\":$((RANDOM %7)),\"oil\":$((RANDOM %3))}" >> log.00
 sleep 1
done
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容