Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
The solution set must not contain duplicate triplets.
Example:
Given array nums = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
思路:
1.先对A排序
2.遍历数组A[0]->A[n-3],对每一位元素A[i], 寻找A[l]+A[r]==0-A[i]的l和r,l=i+1,r=n-1,通过l++和r--两边收缩。
3.注意skip元素重复的情况。
代码
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> ret = new ArrayList<>();
if (nums == null || nums.length < 3) {
return ret;
}
Arrays.sort(nums);
int n = nums.length;
for (int i=0; i<n-2; i++) {
if (i > 0 && nums[i] == nums[i-1]) {
continue;
}
int target = 0-nums[i];
for (int l=i+1, r=n-1; l<r;) {
if (nums[l] + nums[r] == target) {
ret.add(Arrays.asList(nums[i],nums[l],nums[r]));
while (l+1<n && nums[l]==nums[l+1])
l++;
while (r>1 && nums[r]==nums[r-1])
r--;
l++;
r--;
}
else if (nums[l] + nums[r] < target) {
while (l+1<n && nums[l]==nums[l+1])
l++;
l++;
}
else if (nums[l] + nums[r] > target) {
while (r>1 && nums[r]==nums[r-1])
r--;
r--;
}
}
}
return ret;
}
}