ES之分析器(Analyzer)

ES-分词器(Analyzer)

把输入的文本块按照一定的策略进行分解,并建立倒排索引。在Lucene的架构中,这个过程由分析器(analyzer)完成。

主要组成

  • character filter:接收原字符流,通过添加、删除或者替换操作改变原字符流。例如:去除文本中的html标签,或者将罗马数字转换成阿拉伯数字等。一个字符过滤器可以有零个或者多个

  • tokenizer:简单的说就是将一整段文本拆分成一个个的词。例如拆分英文,通过空格能将句子拆分成一个个的词,但是对于中文来说,无法使用这种方式来实现。在一个分词器中,有且只有一个tokenizeer

  • token filters:将切分的单词添加、删除或者改变。例如将所有英文单词小写,或者将英文中的停词a删除等。在token filters中,不允许将token(分出的词)position或者offset改变。同时,在一个分词器中,可以有零个或者多个token filters.

索引和搜索分词

文本分词会发生在两个地方:

  • 创建索引:当索引文档字符类型为text时,在建立索引时将会对该字段进行分词。

  • 搜索:当对一个text类型的字段进行全文检索时,会对用户输入的文本进行分词。

配置分词器

默认ES使用standard analyzer,如果默认的分词器无法符合你的要求,可以自己配置。

分词器测试

可以通过_analyzerAPI来测试分词的效果。

POST _analyze
{
  "analyzer": "standard",
  "text": "The quick brown fox"
}

响应结果如下:

{
  "tokens" : [
    {
      "token" : "the",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "quick",
      "start_offset" : 4,
      "end_offset" : 9,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "brown",
      "start_offset" : 10,
      "end_offset" : 15,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "fox",
      "start_offset" : 16,
      "end_offset" : 19,
      "type" : "<ALPHANUM>",
      "position" : 3
    }
  ]
}

同时你也可以按照下面的规则组合使用:

  • 0个或者多个character filters
  • 一个tokenizer
  • 0个或者多个token filters
POST _analyze
{
  "tokenizer": "standard",
  "filter": ["lowercase"],
  "text": "The quick brown fox"
}

响应结果如下:

{
  "tokens" : [
    {
      "token" : "the",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "quick",
      "start_offset" : 4,
      "end_offset" : 9,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "brown",
      "start_offset" : 10,
      "end_offset" : 15,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "fox",
      "start_offset" : 16,
      "end_offset" : 19,
      "type" : "<ALPHANUM>",
      "position" : 3
    }
  ]
}

与之前不同的是,它会将切分的词进行小写处理。这是因为我添加了一个lowercasetoken filter,它会将分词的词进行小写处理。

我们还可以在创建索引前设置一个自定义的分词器:

PUT /my_index?pretty
{
  "settings": {
    "analysis": {
      "analyzer": {
        "std_folded": { 
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "asciifolding"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "my_text": {
        "type": "text",
        "analyzer": "std_folded" 
      }
    }
  }
}


GET /my_index/_analyze?pretty
{
  "analyzer": "std_folded", 
  "text":     "Is this déjà vu?"
}


GET /my_index/_analyze?pretty
{
  "field": "my_text", 
  "text":  "Is this déjà vu?"
}

上面操作我们自定义了一个分词器std_folded,它的tokenizerstandard,同时有两个token filter分别为:lowercaseasiciifolding。我们在定义mapping时,设置了一个字段名为my_text,它的类型为text,我们指定它使用的分词器为我们定义的std_folded.在分词测试中,我们获取的结果为:

{
  "tokens" : [
    {
      "token" : "is",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "this",
      "start_offset" : 3,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "deja",
      "start_offset" : 8,
      "end_offset" : 12,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "vu",
      "start_offset" : 13,
      "end_offset" : 15,
      "type" : "<ALPHANUM>",
      "position" : 3
    }
  ]
}

配置内置分词器

内置的分词器无需任何配置我们就可以使用。但是我们可以修改内置的部分选项修改它的行为。

DELETE my_index

PUT /my_index?pretty
{
  "settings": {
    "analysis": {
      "analyzer": {
        "std_english": { 
          "type":      "standard",
          "stopwords": "_english_"
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "my_text": {
        "type":     "text",
        "analyzer": "standard", 
        "fields": {
          "english": {
            "type":     "text",
            "analyzer": "std_english" 
          }
        }
      }
    }
  }
}


POST /my_index/_analyze?pretty
{
  "field": "my_text", 
  "text": "The old brown cow"
}


POST /my_index/_analyze?pretty
{
  "field": "my_text.english", 
  "text": "The old brown cow"
}

上面的例子中,我们配置分词器std_english,它使用的分词器为standard分词器,他的停词列表设置为_english_.然后字段my_text使用的是standard分词器,而字段my_text.english使用的是我们配置的std_english.最后的分词测试结果如下:

{
  "tokens" : [
    {
      "token" : "the",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "old",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "brown",
      "start_offset" : 8,
      "end_offset" : 13,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "cow",
      "start_offset" : 14,
      "end_offset" : 17,
      "type" : "<ALPHANUM>",
      "position" : 3
    }
  ]
}
{
  "tokens" : [
    {
      "token" : "old",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "brown",
      "start_offset" : 8,
      "end_offset" : 13,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "cow",
      "start_offset" : 14,
      "end_offset" : 17,
      "type" : "<ALPHANUM>",
      "position" : 3
    }
  ]
}

结果1和2的区别为,结果2中的停词The被删除,而结果1中的并没有。这是因为my_text.english配置了停词。

创建自定义分词器

当内置的分词器无法满足需求时,可以创建custom类型的分词器。

  • tokenizer:内置或定制的tokenizer.(必须)
  • char_filter:内置或定制的char_filter(非必须)
  • filter:内置或定制的token filter(非必须)
  • position_increment_gap:当值为文本数组时,设置改值会在文本的中间插入假空隙。设置该属性,对与后面的查询会有影响。默认该值为100.
PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_custom_analyzer":{
          "type":"custom",
          "tokenizer":"standard",
          "char_filter":["html_strip"],
          "filter":["lowercase","asciifolding"]
        }
      }
    }
  }
}

上面的示例中定义了一个名为my_custom_analyzer的分词器,该分词器的typecustomtokenizerstandardchar_filterhmtl_strip,filter定义了两个分别为:lowercaseasciifolding。运行分词测试:

POST my_index/_analyze
{
  "text": "Is this <b>déjà vu</b>?",
  "analyzer": "my_custom_analyzer"
}

结果如下:

{
  "tokens" : [
    {
      "token" : "is",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "this",
      "start_offset" : 3,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "deja",
      "start_offset" : 11,
      "end_offset" : 15,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "vu",
      "start_offset" : 16,
      "end_offset" : 22,
      "type" : "<ALPHANUM>",
      "position" : 3
    }
  ]
}

指定分词器

分词器的使用地方有两个:

  • 创建索引时
  • 进行搜索时

创建索引时指定分词器

如果设置手动设置了分词器,ES将按照下面顺序来确定使用哪个分词器:

  • 先判断字段是否有设置分词器,如果有,则使用字段属性上的分词器设置
  • 如果设置了analysis.analyzer.default,则使用该设置的分词器
  • 如果上面两个都未设置,则使用默认的standard分词器

为字段指定分词器

PUT my_index
{
  "mappings": {
    "properties": {
      "title":{
        "type":"text",
        "analyzer": "whitespace"
      }
    }
  }
}

设置索引默认分词器

PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "default":{
          "type":"simple"
        }
      }
    }
  }
}

搜索时如何确定分词器

在搜索时,通过下面参数依次检查搜索时使用的分词器:

  • 搜索时指定analyzer参数
  • 创建mapping时指定字段的search_analyzer属性
  • 创建索引时指定settinganalysis.analyzer.default_search
  • 查看创建索引时字段指定的analyzer属性

如果上面几种都未设置,则使用默认的standard分词器。

搜索时指定analyzer查询参数

GET my_index/_search
{
  "query": {
    "match": {
      "message": {
        "query": "Quick foxes",
        "analyzer": "stop"
      }
    }
  }
}

指定字段的seach_analyzer

PUT my_index
{
  "mappings": {
    "properties": {
      "title":{
        "type":"text",
        "analyzer": "whitespace",
        "search_analyzer": "simple"
      }
    }
  }
}

指定索引的默认搜索分词器

PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "default":{
          "type":"simple"
        },
        "default_seach":{
          "type":"whitespace"
        }
      }
    }
  }
}

上面指定创建索引时使用的默认分词器为simple分词器,而搜索的默认分词器为whitespace分词器。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • 官方文档:https://www.elastic.co/guide/en/elasticsearch/refere...
    DimonHo阅读 925评论 0 0
  • 分析数据 使用分析器分析文档 使用分析API 分词 字符过滤器 分词过滤器 提取词干 es所包含的分析器 1、什么...
    yongfutian阅读 3,816评论 0 0
  • Elasticsearch 中文搜索时遇到几个问题: 当搜索关键词如:“人民币”时,如果分词将“人民币”分成“人”...
    永远de明天阅读 811评论 0 0
  • 在上一篇文章中,我们知道client和ES交互的数据格式都是json,也知道了ES中的index和type的关系。...
    11舍的华莱士阅读 3,333评论 0 1
  • 我在学生时代除了教科书以外,基本不读课外书。喜欢上阅读以后,我才发现自己想要读的书实在是太多太多,而我读过的书实在...
    向上有阳光阅读 507评论 3 15