cs231n课程作业assignment1(Softmax)

前言:


以斯坦福cs231n课程的python编程任务为主线,展开对该课程主要内容的理解和部分数学推导。该课程相关笔记参考自知乎-CS231n官方笔记授权翻译总集篇发布课程材料和事例参考自-cs231n
本章为线性分类器的softmax讲解,紧接上章的SVM,其中涉及到的一些线性分类器的知识已经在上章说明,本次便不再赘述。cs231n课程作业assignment1(SVM)

SoftMax分类器简介:


Softmax和SVM同属于线性分类器,主要的区别在于Softmax的损失函数与SVM的损失函数的不同。Softmax分类器就可以理解为逻辑回归分类器面对多个分类的一般化归纳。SVM将输出f(x_i,W)作为每个分类的评分,而Softmax的输出的是评分所占的比重,这样显得更加直观。

在Softmax分类器中,函数映射f(x_i;W)=Wx_i保持不变,但将这些评分值视为每个分类的未归一化的对数概率,并且将折叶损失(hinge loss)替换为交叉熵损失(cross-entropy loss)。公式如下:

![](http://latex.codecogs.com/svg.latex?L_i = -log( \frac{e^{f_{y_i}}}{\sum_j e^{f_j}}))

在上式中,使用f_j来表示分类评分向量中f的第j个元素个,数据集的损失值是数据集中所有样本数据的损失值的均值与正则化损失R(W)之和。其中Softmax函数为:

![](http://latex.codecogs.com/svg.latex?f_j(z) = \frac{e{z_j}}{\sum_ke{f_j}})

其输入值是一个向量,向量中元素为任意实数的评分值(z中的),函数对其进行压缩,输出一个向量,其中每个元素值在0到1之间,且所有元素之和为1。

除了损失函数不同,其他的操作与SVM基本相同,进一步的讲,SVM分类器使用的是折叶损失(hinge loss),而Softmax使用的是交叉熵损失(corss-entropy loss),本质上都属于线性分类器的一种。

Softmax与SVM比较:


img
img

针对一个数据点,SVM和Softmax分类器的不同处理方式的例子。两个分类器都计算了同样的分值。不同之处在于对$f$分值的解释:SVM分类器将它们看做是分类评分,它的损失函数鼓励正确的分类(本例中是蓝色的类别2)的分值比其他分类的分值高出至少一个边界值。Softmax分类器将这些数值看做是每个分类没有归一化的对数概率,鼓励正确分类的归一化的对数概率变高,其余的变低。SVM的最终的损失值是1.58,Softmax的最终的损失值是0.452,但要注意这两个数值没有可比性。只在给定同样数据,在同样的分类器的损失值计算中,它们才有意义。

在实际使用中,SVM和Softmax经常是相似的:通常说来,两种分类器的表现差别很小,不同的人对于哪个分类器更好有不同的看法。相对于Softmax分类器,SVM更加“局部目标化(local objective)”,这既可以看做是一个特性,也可以看做是一个劣势。考虑一个评分是[10, -2, 3]的数据,其中第一个分类是正确的。那么一个SVM(&$Delta =1$)会看到正确分类相较于不正确分类,已经得到了比边界值还要高的分数,它就会认为损失值是0。SVM对于数字个体的细节是不关心的:如果分数是[10, -100, -100]或者[10, 9, 9],对于SVM来说没设么不同,只要满足超过边界值等于1,那么损失值就等于0。

对于softmax分类器,情况则不同。对于[10, 9, 9]来说,计算出的损失值就远远高于[10, -100, -100]的。换句话来说,softmax分类器对于分数是永远不会满意的:正确分类总能得到更高的可能性,错误分类总能得到更低的可能性,损失值总是能够更小。但是,SVM只要边界值被满足了就满意了,不会超过限制去细微地操作具体分数。这可以被看做是SVM的一种特性。举例说来,一个汽车的分类器应该把他的大量精力放在如何分辨小轿车和大卡车上,而不应该纠结于如何与青蛙进行区分,因为区分青蛙得到的评分已经足够低了。

Softmax实现:


<li>softmax.py

    import numpy as np
    from random import shuffle
    import math
    
    def softmax_loss_naive(W, X, y, reg):
      """
      Softmax loss function, naive implementation (with loops)
    
      Inputs have dimension D, there are C classes, and we operate on minibatches
      of N examples.
    
      Inputs:
      - W: A numpy array of shape (D, C) containing weights.
      - X: A numpy array of shape (N, D) containing a minibatch of data.
      - y: A numpy array of shape (N,) containing training labels; y[i] = c means
        that X[i] has label c, where 0 <= c < C.
      - reg: (float) regularization strength
    
      Returns a tuple of:
      - loss as single float
      - gradient with respect to weights W; an array of same shape as W
      """
      # Initialize the loss and gradient to zero.
      loss = 0.0
      dW = np.zeros_like(W)
      num_classes = W.shape[1]
      num_train = X.shape[0]
      loss = 0.0
      for i in xrange(num_train):
        scores = X[i].dot(W)
        scores = np.exp(scores)
        scores = normalized(scores)
        for j in xrange(num_classes):
          if j == y[i]:
            continue
          margin = -np.log(scores_correct)
          if margin > 0:
            loss += margin
            dW[:, y[i]] += -X[i, :]    
            dW[:, j] += X[i, :]         
    
      # Right now the loss is a sum over all training examples, but we want it
      # to be an average instead so we divide by num_train.
      loss /= num_train
      dW /= num_train
      # Add regularization to the loss.
      dW += reg * W
     
      return loss, dW
    
    
    def softmax_loss_vectorized(W, X, y, reg):
      """
      Softmax loss function, vectorized version.
    
      Inputs and outputs are the same as softmax_loss_naive.
      """
      # Initialize the loss and gradient to zero.
      loss = 0.0
      dW = np.zeros_like(W)
      scores = X.dot(W) 
      scores = np.exp(scores) 
      scores = normalized(scores)
      num_classes = W.shape[1]
      num_train = X.shape[0]
    
      margins = -np.log(scores)
      ve_sum = np.sum(margins,axis=1)/num_classes
      y_trueClass = np.zeros_like(margins)
      y_trueClass[range(num_train), y] = 1.0
      loss += (np.sum(ve_sum) / num_train)
      dW += np.dot(X.T,scores-y_trueClass)/num_train
    
      return loss, dW
    
    def normalized(a):
        sum_scores =  np.sum(a,axis=1)
        sum_scores =  1 / sum_scores
        result = a.T * sum_scores.T
        return result.T

测试:


不同参数下Softmax的识别率结果:


softmax

总结:


本章主要介绍了另一个线性分类器Softmax,阐述了Softmax与SVM的主要区别,而Softmax的loss function对于以后的神经网络的学习有很大的帮助。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容