Elasticsearch聚合后将聚合结果进行分页的解决办法

PS:我使用的ES版本是7.9.2
如题:最近遇到类似需求,需要将terms聚合的结果以列表形式分页展示。

  • Demo数据准备:
PUT /employees/_bulk
{ "index" : {  "_id" : "1" } }
{ "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 }
{ "index" : {  "_id" : "2" } }
{ "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000}
{ "index" : {  "_id" : "3" } }
{ "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 }
{ "index" : {  "_id" : "4" } }
{ "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000}
{ "index" : {  "_id" : "5" } }
{ "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 }
{ "index" : {  "_id" : "6" } }
{ "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000}
{ "index" : {  "_id" : "7" } }
{ "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 }
{ "index" : {  "_id" : "8" } }
{ "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000}
{ "index" : {  "_id" : "9" } }
{ "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 }
{ "index" : {  "_id" : "10" } }
{ "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000}
{ "index" : {  "_id" : "11" } }
{ "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 }
{ "index" : {  "_id" : "12" } }
{ "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000}
{ "index" : {  "_id" : "13" } }
{ "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 }
{ "index" : {  "_id" : "14" } }
{ "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000}
{ "index" : {  "_id" : "15" } }
{ "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 }
{ "index" : {  "_id" : "16" } }
{ "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : {  "_id" : "17" } }
{ "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : {  "_id" : "18" } }
{ "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000}
{ "index" : {  "_id" : "19" } }
{ "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000}
{ "index" : {  "_id" : "20" } }
{ "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}

按job分桶聚合

  • query1:
GET employees/_search
{ 
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "myTerms": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      }
    }
  }
}
  • result1
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 20,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "myTerms" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Java Programmer",
          "doc_count" : 7
        },
        {
          "key" : "Javascript Programmer",
          "doc_count" : 4
        },
        {
          "key" : "QA",
          "doc_count" : 3
        },
        {
          "key" : "DBA",
          "doc_count" : 2
        },
        {
          "key" : "Web Designer",
          "doc_count" : 2
        },
        {
          "key" : "Dev Manager",
          "doc_count" : 1
        },
        {
          "key" : "Product Manager",
          "doc_count" : 1
        }
      ]
    }
  }
}

利用bucket_sort实现分页

  • query2
GET employees/_search
{
  "size": 0,
  "query": {
    "match_all": {}
  },
  "aggs": {
    "myTerms": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs": {
        "myBucketSort": {
          "bucket_sort": {
            "from": 0,
            "size": 5,
            "gap_policy": "SKIP"
          }
        }
      }
    }
  }
}

注意:

  1. bucket_sort中 from不是pageNum,如想实现pageNum效果,from=pageNum*size即可;
  2. terms聚合的size,这里demo中分桶后只有7条,所以我只设了10,实际上size可以尽可能的设置大一点,具体大小按实际情况来看;
  • result2
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 20,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "myTerms" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Java Programmer",
          "doc_count" : 7
        },
        {
          "key" : "Javascript Programmer",
          "doc_count" : 4
        },
        {
          "key" : "QA",
          "doc_count" : 3
        },
        {
          "key" : "DBA",
          "doc_count" : 2
        },
        {
          "key" : "Web Designer",
          "doc_count" : 2
        }
      ]
    }
  }
}

可以看到实现了分页的效果,但是新的问题出现了,没有total的话前端很多分页插件效果都不好,查询相关文档,cardinality类似SQL中distinct某个字段后,再count,于是使用cardinality获取相关聚合结果的total:

  • query3
GET employees/_search
{
  "size": 0,
  "query": {
    "match_all": {}
  },
  "aggs": {
    "myTerms": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs": {
        "myBucketSort": {
          "bucket_sort": {
            "from": 0,
            "size": 5,
            "gap_policy": "SKIP"
          }
        }
      }
    },
    "termsCount": {
      "cardinality": {
        "field": "job.keyword",
        "precision_threshold": 30000
      }
    }
  }
}

这里简单介绍一下precision_threshold
摘抄官网的原文:
The precision threshold options allows to trade memory for accuracy, and defines a unique count below which counts are expected to be close to accurate. Above this value, counts might become a bit more fuzzy. The maximum supported value is 40000, thresholds above this number will have the same effect as a threshold of 40000. The default value is 3000.
翻译:
精度阈值选项允许用内存交换精度,并定义了一个唯一的计数,在该计数低于此值时,预计计数接近准确。超过这个值,计数可能会变得有点模糊。支持的最大值是40000,高于这个数字的阈值将具有与40000阈值相同的效果。缺省值为3000。

  • result3
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 20,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "myTerms" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Java Programmer",
          "doc_count" : 7
        },
        {
          "key" : "Javascript Programmer",
          "doc_count" : 4
        },
        {
          "key" : "QA",
          "doc_count" : 3
        },
        {
          "key" : "DBA",
          "doc_count" : 2
        },
        {
          "key" : "Web Designer",
          "doc_count" : 2
        }
      ]
    },
    "termsCount" : {
      "value" : 7
    }
  }
}

result3中termsCount就是我们想要得到的total。
以上就是我对terms聚合后再对其聚合结果进行分页的解决办法,如果大家有其他更好的办法,也请分享出来。
如果觉得本文有帮助到你,请给我点个赞吧!
PS:如果需要在此基础上支持搜索功能,请移步Elasticsearch聚合结果分页并支持之模糊查询

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容