Problem
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return false.
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return true.
Code
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
static int var = [](){
std::ios::sync_with_stdio(false);
cin.tie(NULL);
return 0;
}();
class Solution {
public:
int height = 0;
bool isBalanced(TreeNode* root) {
if(root == NULL)
return true;
int height = 1;
return checkBalanced(root,height);
}
bool checkBalanced(TreeNode* root, int& height){
if(!root)
return true;
int left_height = 0;
int right_height = 0;
if(!checkBalanced(root->left,left_height))
return false;
if(!checkBalanced(root->right,right_height))
return false;
if(abs(left_height-right_height)>1)
return false;
height = max(left_height,right_height)+1;
return true;
}
};