Flink学习笔记:Connectors概述

本文为《Flink大数据项目实战》学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程:

Flink大数据项目实战:http://t.cn/EJtKhaz

1. 各种Connector

1.1Connector是什么鬼

Connectors是数据进出Flink的一套接口和实现,可以实现Flink与各种存储、系统的连接

注意:数据进出Flink的方式不止Connectors,还有:

1.Async I/O(类Source能力):异步访问外部数据库

2.Queryable State(类Sink能力):当读多写少时,外部应用程序从Flink拉取需要的数据,而不是Flink把大量数据推入外部系统(后面再讲)

1.2哪些渠道获取connector

预定义Source和Sink:直接就用,无序引入额外依赖,一般用于测试、调试。

捆绑的Connectors:需要专门引入对应的依赖(按需),主要是实现外部数据进出Flink

1.Apache Kafka (source/sink)

2.Apache Cassandra (sink)

3.Amazon Kinesis Streams (source/sink)

4.Elasticsearch (sink)

5.Hadoop FileSystem (sink)

6.RabbitMQ (source/sink)

7.Apache NiFi (source/sink)

8.Twitter Streaming API (source)

Apache Bahir

1.Apache ActiveMQ (source/sink)

2.Apache Flume (sink)

3.Redis (sink)

4.Akka (sink)

5.Netty (source)

1.3预定义Source

预定义Source包含以下几类:

1.基于文件

readTextFile

StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnviro nment();

DataStream lines =env.readTextFile("file:///path");

readFile

DataStream lines =env.readFile(inputFormat, "file:///path");

2.基于Socket

StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnviro nment();

DataStream socketLines = env.socketTextStream("localhost", 9998);

3.基于Elements 和Collections

fromElements

StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnviro nment();

DataStream names =env.fromElements("hello", "world", "!");

fromCollections

List list = newArrayList(); list.add("Hello");list.add("world");

list.add("!");

DataStream names =env.fromCollection(list);

使用场景: 应用本地测试,但是流处理应用会出现Finished的状态

1.4预定义Sink

stream.print() /printToErr()(注: 线上应用杜绝使用,采用抽样打印或者日志的方式)

stream.writeAsText("/path/to/file")/TextOutputFormat

stream.writeAsCsv(“/path/to/file”)/CsvOutputFormat

writeUsingOutputFormat() / FileOutputFormat

stream.writeToSocket(host, port,SerializationSchema)

1.5队列系统Connector(捆绑)

支持Source 和Sink

需要专门引入对应的依赖(按需),主要是实现外部数据进出Flink

1.Kafka(后续专门讲)

2.RabbitMQ

1.6存储系统Connector(捆绑)

只支持Sink

1.HDFS

2.ElasticSearch

3.Redis

4.Apache Cassandra

1.7 Source容错性保证

1.8 Sink容错性保证

2. 自定义Source与Sink

2.1自定义Source

1.实现SourceFunction(非并行,并行度为1)

1)适用配置流,通过广播与时间流做交互

2)继承SourceFuncion,实现run 方法

3)cancel 方法需要处理好(cancel应用的时候,这个方法会被调用)

4)基本不需要做容错性保证

2.实现ParallelSourceFunction

1)实现ParallelSourceFunction类或者继承RichParallelSourceFunction。

2)实现切分数据的逻辑。

3)实现CheckpointedFunction接口,来保证容错保证。

4)Source 拥有回溯读取,可以减少的状态的保存。

3.继承RichParallelSourceFunction

2.2自定义Sink

1)实现SinkFunction 接口或者继承RichSinkFunction。

2)实现CheckpointedFunction,做容错性保证。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容