学习笔记TF047:PlayGround、TensorBoard

PlayGround。http://playground.tensorflow.org 。教学目的简单神经网络在线演示、实验图形化平台。可视化神经网络训练过程。在浏览器训练神经网络。界面,数据(DATA)、特征(FEATURES)、神经网络隐藏层(HIDDEN LAYERS)、层中连接线、输出(OUTPUT)。

数据。二维平面,蓝色正值,黄色负值。数据形态,圆形、异或、高斯、螺旋。数据配置,调整噪声(noise)大小,改变训练、测试数据比例(ratio),调整入输入每批(batch)数据数量1-30。

特征。特征提取(feature extraction)。每个点有X1、X2两个特征。衍生其他特征,X1X1、X2X2、X1X2、sin(X1)、sin(X2)。X1左边黄色是负,右边蓝色是正,表示横坐标值。X2上边蓝色是正,下边黄色是负,表示纵坐标值。X1X1横坐标抛物线信息。X2X2纵坐标抛物线信息。X1X2双曲抛物面信息。sin(X1)横坐标正弦函数信息。sin(X2)纵坐标正弦函数信息。分类器(classifier)结合特征,画出线,把原始颜色数据分开。

隐藏层。设置隐藏层数量、每个隐藏层神经元数量。隐藏层间连接线表示权重(weight),蓝色表示神经元原始输出,浅色表示神经元负输出。连接线粗细、深浅表示权重绝对值大小。鼠标放线上可以看到具体值,修改值。修改值要考虑激活函数。Sigmoid,没有负向黄色区域,值域(0,1)。下层神经网络神经元对上层输出再组合。根据上次预测准确性,反向传播每个组合不同权重。组合连接线粗细深浅变化。越深越粗,权重越大。

输出。黄色点归于黄色背景,蓝色点归于蓝色背景。背景颜色深浅代表可能性强弱。选定螺旋形数据,7个特征全部输入,3个隐藏层,第一层8个神经元,第二层4个神经元,第三层2个神经元。训练2分钟,测试损失(test loss)和训练损失(training loss)不再下降。只输入最基本前4特征,6个隐藏层,前4层8个神经元,第五层6个神经元,第六层2个神经元。增加神经元个数和神经网络层数。

TensorBoard。TensorFlow自带可视化工具,Web应用程序套件。7种可视化,SCALARS(训练过程准确率、损失值、权重/偏置变化)、IMAGES(训练过程记录图像)、AUDIO(训练过程记录音频)、GRAPHS(模型数据流图、各设备消耗内存时间)、DISTRIBUTIONS(训练过程记数据分布图)、HISTOGRAMS(训练过程记录数据柱状图)、EMBEDDINGS(展示词向量投影分布)。

运行本地服务器,监听6006端口。浏览器发出请求,分析训练记录数据,绘制训练过程图像。运行手写数字识别入门例子。python tensorflow-1.1.0/tensorflow/examples/tutorials/mnist/mnist/mnist_with_summaries.py 。打开TensorBoard面板。tensorboard -logdir=/tmp/mnist/logs/mnist_with_summaries 。浏览器找开网址,查看面板各项功能。

SCALARS面板。左边,Split on undercores(用下划线分开显示)、Data downloadlinks(数据下载链接)、Smoothing(图像曲线平滑程度)、Horizontal Axis(水平轴)。水平轴3种,STEP迭代次数,RELATIVE训练集测试集相对值,WALL时间。右边,准确率、交叉熵损失函数值变化曲线(迭代次数1000次)。每层偏置(biases)、权重(weights)变化曲线,每次迭代最大值、最小值、平均值、标准差。

IMAGES面板。训练数据集、测试集预处理后图片。

AUDIO面板。训练过程处理音频数据。

GRAPHS面板。数据流图。节点间连线为数据流,连线越粗,两个节点间流动张量(tensor)越多。左边,选择迭代步骤。不同Color(颜色)不同Structure(整个数据流图结构),不同Color不同Device(设备)。选择特定迭代step899,显示各个节点Compute time(计算时间)、Memory(内存消耗)。

DISTRIBUTIONS面板。平面表示特定层激活前后、权重、偏置分布。

HISTOGRAMS面板。立体表示特定层激活前后、权重、偏置分布。

EMBEDDINGS面板。词嵌入投影。

词嵌入(word embedding),自然语言处理,推荐系统。Word2vec。TensorFlow Word2vec basic版、optimised版。

降维分析。代码 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py 。Word2vec训练数据集text8 http://mattmahoney.net/dc/textdata 。只包含a~z字符和空格,27种字符。Skip-gram模型,根据目标词汇预测上下文。给定n个词围绕词w,w预测一个句子中一个缺漏词c,概率p(c|w)表示。生成t-SNE降给呈现词汇接近程度关系。

word2vec_basic.py。
下载文件读取数据,read_data函数,读取输入数据。输出list,每项一词。
建立词汇字典,对应词、编码。dictionary存储词、编码。reverse_dictionary是反过来的dictionary 编码、词。data是词list对应词编码上一步词list转编码。count存词汇、词频,重复数量少于49999,用'UNK'表示稀有词。
产生一个批次(batch)训练数据。定义generate_batch函数,输入batch_size、num_skip、skip_window,batch_size是每个batch大小,num_skips样本源端考虑次数,skip_window左右考虑词数,skip_window*2=num_skips。返回batch、label。batch形状[batch_size],label形状[batch_size,1],一个中心词预测周边词。
构建、训练模型。Skip-gram模型。
t-SNE降维呈现。Matplotlib绘制出图形。

t-SNE。流形学习(manifold Learning)。假设数据均匀采样于一个高维空间低维流形。流形学习,找到高维空间低维流形,求相庆嵌入映射,实现维数约简或数据可视化。线性流形学习如主成份分析(PCA),非线性流形学习如特距特征映射(Isomap)、拉普拉斯特征映射(Laplacian eigenmaps,LE)、局部线性嵌入(Locally-linear embedding,LLE)。

嵌入投影。EMBEDDINGS面板,交互式可视化、分析高维数据。例子 https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py

定义操作(operator,OP),SkipgramWord2vec、NegTrainWord2vec。操作先编译,执行。TF_INC=$(python -c 'import tensorflow as tf;print(tf.sysconfig.get_include())') 。g++ -std=c++11 -shared word2vec_ops.cc word2vec_kernels.cc -o word2vec_ops.so -fPIC -I $TF_INC -O2 -D_GLIBCXX_USE_CXX11_ABI=0 。当前目录下生成word2vec_ops.so文件,执行word2vec_optimized.py,生成模型、日志文件,位于/tmp/,执行tensorboard --logdir=/tmp/ 。访问浏览器。

EMBEDDINGS面板左边工具栏,降维方式T-SNE、PCA、CUSTOM,二维、三维图像切换。t-SNE降维工具,手动调整Dimension(困惑度)、Learnign rate(学习率),生成10000个点分布。右边,正则表达式匹配词,词间余弦距离、欧式距离关系。任意选择一个点,选择“isolate 101 points”按钮,展示100个空间上最近被选择点词,词数量。

参考资料:
《TensorFlow技术解析与实战》

欢迎付费咨询(150元每小时),我的微信:qingxingfengzi

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容