ElasticSearch 字段类型介绍

1 字段类型概述

image.png

2 字符串类型

ElasticSearch对字符串拥有两种完全不同的搜索方式. 你可以按照整个文本进行匹配, 即关键词搜索(keyword search), 也可以按单个字符匹配, 即全文搜索(full-text search).
对ElasticSearch稍有了解的人都知道, 前者的字符串被称为not-analyzed字符, 而后者被称作analyzed字符串。

"""
Text:
会分词,然后进行索引
支持模糊、精确查询
不支持聚合

keyword:
不进行分词,直接索引
支持模糊、精确查询
支持聚合
"""

text用于全文搜索的, 而keyword用于关键词搜索.
(1)string
string类型在ElasticSearch 旧版本中使用较多,从ElasticSearch 5.x开始不再支持string,由text和keyword类型替代。
(2)text
当一个字段是要被全文搜索的,比如Email内容、产品描述,应该使用text类型。设置text类型以后,字段内容会被分析,在生成倒排索引以前,字符串会被分析器分成一个一个词项。text类型的字段不用于排序,很少用于聚合。

{
"match_mapping_type": "string",
"mapping": {
"type": "text",
"store": true
}
}

(3)keyword
keyword类型适用于索引结构化的字段,比如email地址、主机名、状态码和标签。如果字段需要进行过滤(比如查找已发布博客中status属性为published的文章)、排序、聚合。keyword类型的字段只能通过精确值搜索到。

{
    "foo": {
        "type": "text",
        "fields": {
            "keyword": {
                "type": "keyword",
                "ignore_above": 256
            }
        }
    }
}

3. 整数类型

image.png

在满足需求的情况下,尽可能选择范围小的数据类型。比如,某个字段的取值最大值不会超过100,那么选择byte类型即可。迄今为止吉尼斯记录的人类的年龄的最大值为134岁,对于年龄字段,short足矣。字段的长度越短,索引和搜索的效率越高。

4. 浮点类型

image.png

index分析

  • not_analyzed(默认) ,设置为该值可以保证该字段能通过检索查询到
  • no

store存储

  • true 独立存储
  • false(默认)不存储,从_source中解析

对于float、half_float和scaled_float,-0.0和+0.0是不同的值,使用term查询查找-0.0不会匹配+0.0,同样range查询中上边界是-0.0不会匹配+0.0,下边界是+0.0不会匹配-0.0。

其中scaled_float,比如价格只需要精确到分,price为57.34的字段缩放因子为100,存起来就是5734
优先考虑使用带缩放因子的scaled_float浮点类型。

5. date类型

index分析

  • not_analyzed(默认) ,设置为该值可以保证该字段能通过检索查询到
  • no

store存储

  • true 独立存储
  • false(默认)不存储,从_source中解析

日期类型表示格式可以是以下几种:

  1. 日期格式的字符串,比如 “2018-01-13” 或 “2018-01-13 12:10:30”
  2. long类型的毫秒数( milliseconds-since-the-epoch,epoch就是指UNIX诞生的UTC时间1970年1月1日0时0分0秒)
  3. integer的秒数(seconds-since-the-epoch)

ElasticSearch 内部会将日期数据转换为UTC,并存储为milliseconds-since-the-epoch的long型整数。
例子:日期格式数据

      "properties": {
        "postdate":{
          "type":"date",
          "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        }
      }

6.boolean类型

逻辑类型(布尔类型)可以接受true/false/”true”/”false”值

 "properties": {
        "empty":{
                "type":"boolean"
            }
      }

7 .binary类型

二进制字段是指用base64来表示索引中存储的二进制数据,可用来存储二进制形式的数据,例如图像。默认情况下,该类型的字段只存储不索引。二进制类型只支持index_name属性。

8. array类型

在ElasticSearch中,没有专门的数组(Array)数据类型,但是,在默认情况下,任意一个字段都可以包含0或多个值,这意味着每个字段默认都是数组类型,只不过,数组类型的各个元素值的数据类型必须相同。在ElasticSearch中,数组是开箱即用的(out of box),不需要进行任何配置,就可以直接使用。

在同一个数组中,数组元素的数据类型是相同的,ElasticSearch不支持元素为多个数据类型:[ 10, “some string” ],常用的数组类型是:

  1. 字符数组: [ “one”, “two” ]
  2. 整数数组: productid:[ 1, 2 ]
  3. 对象(文档)数组:
    “user”:[ { “name”: “Mary”, “age”: 12 }, { “name”: “John”, “age”: 10 }],
    ElasticSearch内部把对象数组展开为
    {“user.name”: [“Mary”, “John”], “user.age”: [12,10]}

9 .ip类型

ip类型的字段用于存储IPv4或者IPv6的地址

index分析

  • not_analyzed(默认) ,设置为该值可以保证该字段能通过检索查询- 到
  • no

store存储

  • true 独立存储
  • false(默认)不存储,从_source中解析
"properties": {
        "nodeIP":{
          "type": "ip"
        }
}

原文:https://blog.csdn.net/chengyuqiang/article/details/79048800

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容