SciPy

From Wikipedia, the free encyclopedia

Not to be confused withScientificPython.

SciPy(pronounced “Sigh Pie”) is anopen sourcePythonlibrary used by scientists, analysts, and engineers doingscientific computingand technical computing.

SciPy contains modules foroptimization,linear algebra,integration,interpolation,special functions,FFT,signalandimage processing,ODEsolvers and other tasks common in science and engineering.

SciPy builds on theNumPyarray object and is part of the NumPy stack which includes tools likeMatplotlib,pandasandSymPy. There is an expanding set of scientific computing libraries that are being added to the NumPy stack everyday. This NumPy stack has similar users to other applications such asMATLAB,GNU Octave, andScilab. The NumPy stack is also sometimes referred to as the SciPy stack.[2]

SciPy is also a family of conferences for users and developers of these tools: SciPy (in the United States), EuroSciPy (in Europe) and SciPy.in (in India).[3]Enthoughtoriginated the SciPy conference in the United States and continues to sponsors many of the international conferences as well as host theSciPywebsite.

The SciPy library is currently distributed under theBSD license, and its development is sponsored and supported by an open community of developers. It is also supported byNumfocuswhich is a community foundation for supporting reproducible and accessible science.

Python Scientific Computing Environment[edit]

A typical Python Scientific Computing Environment includes manydedicated software tools. For example,

Plotting. The currently recommended 2-D plotting package isMatplotlib, however, there are many other plotting packages such asHippoDraw,Chaco, Biggles, andBokeh. Other popular graphics tools includePython Imaging LibraryandMayaVi(for 3D visualization).

Optimization. While SciPy has its own optimization package,OpenOpthas access to more optimization solvers and can involveAutomatic differentiation.CVXOptis another popular optimization library.

Advanced data analysis. Via RPy, Python can interface to theRstatistical package for advanced data analysis.

Database. NumPy can interface withPyTables, a hierarchical database package designed to efficiently manage large amounts of data usingHDF5.

Interactive shell.IPythonis an interactive environment that offers debugging and coding features similar to that whichMATLABoffers.

Symbolic mathematics. There are several Python libraries—such asPyDSToolSymbolic andSymPy—that offer symbolic mathematics.

Specialized extensions. The"scikits"provide special-purpose add-ons to NumPy and Python. Of these,scikit-image,scikit-learn[4]andstatsmodelsare mature packages.

The SciPy Library/Package[edit]

The SciPy package of key algorithms and functions core to Python's scientific computing capabilities. Available sub-packages include:

constants: physical constants and conversion factors (since version 0.7.0[5])

cluster: hierarchical clustering, vector quantization, K-means

fftpack: Discrete Fourier Transform algorithms

integrate: numerical integration routines

interpolate: interpolation tools

io: data input and output

lib: Python wrappers to external libraries

linalg: linear algebra routines

misc: miscellaneous utilities (e.g. image reading/writing)

ndimage: various functions for multi-dimensional image processing

optimize: optimization algorithms including linear programming

signal: signal processing tools

sparse: sparse matrix and related algorithms

spatial: KD-trees, nearest neighbors, distance functions

special: special functions

stats: statistical functions

weave: tool for writing C/C++ code as Python multiline strings

Snapshot showing SciPy ndimage source code

Data structures[edit]

The basic data structure used by SciPy is a multidimensional array provided by theNumPymodule. NumPy provides some functions for linear algebra, Fourier transforms and random number generation, but not with the generality of the equivalent functions in SciPy. NumPy can also be used as an efficient multi-dimensional container of data with arbitrary data-types. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. Older versions of SciPy used Numeric as an array type, which is now deprecated in favor of the newer NumPy array code.[6]

History of SciPy[edit]

In the 1990s, Python was extended to include an array type for numerical computing called Numeric (This package was eventually replaced by Travis Oliphant who wrote NumPy in 2006 as a blending of Numeric and Numarray which had been started in 2001). In 1999, Travis Oliphant created a large collection of extension modules to enable scientific computing with Python and helped Pearu Peterson write f2py which enabled easily extending Python with Fortran code. This effort formed the foundation of SciPy. In 2001, Travis Oliphant and Pearu Peterson merged their efforts with a few modules that Eric Jones had written, and called the resulting package SciPy. The newly created package provided a standard collection of common numerical operations on top of the Numeric array data structure. Shortly thereafter, Fernando Pérez released IPython, an enhanced interactive shell widely used in the technical computing community, and John Hunter released the first version of Matplotlib, the 2D plotting library for technical computing. Since then the SciPy environment has continued to grow with more packages and tools for technical computing.[7][8][9]

See also[edit]

Free software portal

List of numerical analysis software

Comparison of numerical analysis software

Sage (mathematics software)

External links[edit]

SciPy website

NumPy website

SciPy Course Outlineby Dave Kuhlman

Python Scientific Lecture Notes

Notes[edit]

Jump up^SciPy Team."How can SciPy be fast if it is written in an interpreted language like Python?". Retrieved2013-12-23.

Jump up^"Scientific Computing Tools for Python". SciPy.org.

Jump up^"SciPy Conferences".

Jump up^Bressert, Eli (2012).SciPy and NumPy: an overview for developers. O'Reilly. p. 43.

Jump up^"SciPy: Scientific Library for Python".SourceForge.

Jump up^"NumPy Homepage".

Jump up^"History of SciPy".

Jump up^"Guide to NumPy"(PDF).

Jump up^"Python for Scientists and Engineers".

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容