3个蜡烛台乘5个马车夫=?

“如果用3个蜡烛台乘5个马车夫,得数该是多少?”——伽莫夫,《我的世界线》,pp19

只有同类的量才能相加。

比如:

1苹果 + 1鸭梨

是没有意义的。

1苹果=1鸭梨

也是没意义的。

我们这里对相等的规定是数字和数字相同,而单位要和单位一样。

(在物理中,我们经常使用“表示为”——$\to$或$\doteq$——这个概念,这是和等于不同的概念。我们可以用一个二分量的列向量去表示自旋的状态,但自旋、自旋的状态、二分量的列向量并不是一类的东西。如果是建立表示的话,我们是可以用苹果去表示鸭梨的。)

1水果 + 1水果 = 2水果

就有意义。

我们管1叫数字,苹果叫单位,[苹果]叫量纲。

英文的量纲是dimension,dimension有尺寸和维度的意思。

乘法的定义是这样的:

1苹果 x 2鸭梨 = 2 苹果·鸭梨

即数字和数字乘,单位和单位乘,所谓单位和单位乘就是把苹果和鸭梨并列,得到新的类,或新的单位——“苹果·鸭梨”,苹果·鸭梨的量纲是:

[苹果·鸭梨] = [苹果] x [鸭梨]

举例而言,物理里面功的定义是:

$W = F_l \cdot l$

功是力$F$乘位移$l$,功的单位是焦耳,功的量纲是:

[功] = [力] x [长度]

我们希望把任意物理量的量纲都表示为几个基本物理量的量纲的表达,在力学中我们选:长度、质量和时间。

那么力的量纲是什么呢?

由牛顿第二定律:

$F = m a$

力的量纲是:

[力] = [质量] x [加速度]

加速度的定义是:

$a = \frac{d v}{d t} = \frac{d^2 x}{dt^2}$

加速度的量纲是:

[加速度] = [长度] [时间]^{-2}

因此功的量纲是:

[功] = [质量] [长度] [时间]^{-2} [长度] = [质量] [长度]^2 [时间]^{-2}

我们可以证明功的量纲和动能的量纲是一样的,它们是同一类的物理量。

动能的定义是:

$K = \frac{m v^2}{2}$

动能的量纲是:

[动能] = [质量] [长度]^2 [时间]^{-2}

弧度是没有量纲的,这与我们对弧度的定义有关。

考虑一段圆弧,圆弧所对的角度是$\theta$,或说我们由角度$\theta$,半径$R$,得到一段圆弧,假设圆弧的长度是$L$。

圆弧长度$L$正比于角度$\theta$,也正比于半径$R$,

我们定义:

$L = R \theta$

圆弧$L$和半径$R$的量纲都是长度。

这样定义的角度$\theta$是无量纲的。

一些例子:

(1)

5米 x 6米 = 30 米·米

“米·米”和“米”不是一类的,我们管“米·米”叫面积,而“米”叫长度。

(2)

0.1 元 x 0.1 元 = 0.01 元·元

“元”是货币单位,“元·元”和“元”不是一类的,0.01自然不是对货币多少的度量。

(3)

请证明量子普适电导率$\frac{e^2}{h}$的量纲是电导率的量纲,这里$e$是电子的电荷,$h$是普朗克常数。

(4)

在物理中还会出现这样的表达,比如:

$A e^{i (kx - \omega t)}$

这里在$e$指数里面,$kx - \omega t$ 解释为角度,是无量纲的。

$x$的量纲是[长度],$k$波矢的量纲是[长度]^{-1}

波矢的定义是:

$k = \frac{2 \pi}{ \lambda}$

即空间上每增加长度份额$\lambda$,相位(无量纲)会增加$2 \pi$,即重复一周期重回起点。

(5)

对包含$e$指数的物理公式,考虑到:

$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + …$

$x$只能是无量纲的,$ex$也是无量纲的,否则就会造成$ex$有不确定的量纲,这是不可能的。

比如(放射性)衰减公式:$A = A_0 e^{- t / \tau}$,$t$的量纲是[时间],$\tau$的量纲也是[时间],我们把$\tau$解读为“寿命”。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 文章作者:Tyan博客:noahsnail.com | CSDN | 简书 声明:作者翻译论文仅为学习,如有侵权请...
    SnailTyan阅读 5,067评论 0 8
  • 本节笔记对应第三周Coursera课程 binary classification problem 更多见:李飞...
    mmmwhy阅读 1,506评论 0 3
  • 算法和数据结构 [TOC] 算法 函数的增长 渐近记号 用来描述算法渐近运行时间的记号,根据定义域为自然数集$N=...
    wxainn阅读 1,060评论 0 0
  • 耳听弦凝神聚势 口衔羽念在红心 吸气拉弓如满月 箭出破空似流星
    缘渡阅读 639评论 0 0
  • 我的体内有很多忍不住就散发出来的气质,很多在事后的我看来都很糟糕,甚至坏了自己一直秉信的道理,这让我很沮丧...
    找不到形容词阅读 284评论 0 0