Array Partition I
描述:
Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.
Example:
Input: [1,4,3,2]
Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).
Note:
1.n is a positive integer, which is in the range of [1, 10000].
2.All the integers in the array will be in the range of [-10000, 10000].
思路:在一个有序数组中,两两之间取最小值才能将损失的差值弥补到最小,使所求得的和最大。因而应先排序再间隔取值求和。
问题:
一开始尝试了最简单的两层for循环排序,之后再间隔取值加和,但是这样超出了运行时间要求。
改变思路,先遍历整个数组,将数组中的值按顺序写入新数组中,未存入时标志为0,存入置为1,取出再置为0,此时为了防止有的数出现多次进行了专门的判断,若该位已经为1,则直接加入结果中(因为两重复的数出现必取其一)。然后再进行遍历,用flag做标识位实现间隔取数的效果,flag为1则加入res,随即flag置0即可跳过下一位。(当然这都是兔子想的==)
代码:
int arrayPairSum(int* nums, int numsSize) {
int i,j;
int temp;
int sum=0;
int count;
int *p;
int res=0;
p=(int *)malloc(sizeof(int)*20001);
memset(p,0,sizeof(int)*20001);
for(i=0;i<numsSize;i++){
if(p[nums[i]+10000]==0){
p[nums[i]+10000]=1;
}
else {
res+=nums[i];
p[nums[i]+10000]=0;
}
}
int bianli=0;
int flag=1;
for(bianli=0;bianli<20001;bianli++){
if(p[bianli]==1){
if(flag){
res+=bianli-10000;
flag=0;
}
else{
flag=1;
}
}
}
return res;
}