一分钟了解堆的基本操作

基本操作

任何一个数据结构,无非就是增删改查四大类:

功能 方法 时间复杂度
offer(E e) O(logn)
poll() O(logn)
无直接的 API 删 + 增
peek() O(1)

这里 peek() 的时间复杂度很好理解,因为堆的用途就是能够快速的拿到一组数据里的最大/最小值,所以这一步的时间复杂度一定是 O(1) 的,这就是堆的意义所在。

那么我们具体来看 offer(E e)poll() 的过程。

offer(E e)

比如我们新加一个 0 到刚才这个最小堆里面:

那很明显,0 是要放在最上面的,可是,直接放上去就不是一棵完全二叉树了啊。。

所以说,

  • 我们先保证加了元素之后这棵树还是一棵完全二叉树,
  • 然后再通过 swap 的方式进行微调,来满足堆序性。

这样就保证满足了堆的两个特点,也就是保证了加入新元素之后它还是个堆

那具体怎么做呢:

Step 1.

先把 0 放在最后接上,别一上来就想着上位;

OK!总算先上岸了,然后我们再一步步往上走。

这里「能否往上走」的标准在于:
是否满足堆序性

也就是说,现在 5 和 0 之间不满足堆序性,那么交换位置,换到直到满足堆序性为止

这里对于最小堆来说的堆序性,就是小的数要在上面

Step 2. 与 5 交换

此时 0 和 3 不满足堆序性了,那么再交换。

Step 3. 与 3 交换

还不行,0 还比 1 小,所以继续换。

Step 4. 与 1 交换

OK!这样就换好了,一个新的堆诞生了~

总结一下这个方法:

先把新元素加入数组的末尾,再通过不断比较与 parent 的值的大小,决定是否交换,直到满足堆序性为止。

这个过程就是 siftUp(),源码如下:

时间复杂度

这里不难发现,其实我们只交换了一条支路上的元素,

也就是最多交换 O(height) 次。

那么对于完全二叉树来说,除了最后一层都是满的,O(height) = O(logn)

所以 offer(E e) 的时间复杂度就是 O(logn) 啦。

poll()

poll() 就是把最顶端的元素拿走。

对了,没有办法拿走中间的元素,毕竟要 VIP 先出去,小弟才能出去。

那么最顶端元素拿走后,这个位置就空了:

我们还是先来满足堆序性,因为比较容易满足嘛,直接从最后面拿一个来补上就好了,先放个傀儡上来。

Step1. 末尾元素上位

这样一来,堆序性又不满足了,开始交换元素。

那 8 比 7 和 3 都大,应该和谁交换呢?

假设与 7 交换,那么 7 还是比 3 大,还得 7 和 3 换,麻烦。

所以是与左右孩子中较小的那个交换。

Step 2. 与 3 交换

下去之后,还比 5 和 4 大,那再和 4 换一下。

Step 3. 与 4 交换

OK!这样这棵树总算是稳定了。

总结一下这个方法:

先把数组的末位元素加到顶端,再通过不断比较与左右孩子的值的大小,决定是否交换,直到满足堆序性为止。

这个过程就是 siftDown(),源码如下:

时间复杂度

同样道理,也只交换了一条支路上的元素,也就是最多交换 O(height) 次。

所以 offer(E e) 的时间复杂度就是 O(logn) 啦。

那以上就是有关堆的基本操作啦!对于堆,还有一个比较特别的操作,就是 heapify(),这是一个很神奇的操作,至于神奇在何处、为什么它能做到、它是怎么做到的,我们下一篇文章再说~

如果你喜欢这篇文章,记得给我点赞留言哦~你们的支持和认可,就是我创作的最大动力,我们下篇文章见!

我是小齐,纽约程序媛,终生学习者,每天晚上 9 点,云自习室里不见不散!

更多干货文章见我的 Github: https://github.com/xiaoqi6666/NYCSDE

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352