暗图像图像修复处理CVPR2021

声明:本博文做了该代码的测试分享,敬请查阅;

top.png

图像修复专栏

图像修复新的创作思路:CVPR 2021、代码测评


📘 基本信息


0-4

该论文所致力于解决的问题

  • 极暗图像变为 亮的图像(图像修复)
  • 从而提升(解决)极暗图像的目标检测问题
0-1

📘 下载代码


方式一(网络受限、可能下载失败)

git clone https://github.com/MohitLamba94/Restoring-Extremely-Dark-Images-In-Real-Time.git

方式二(手动下载、copy 到服务器、解压即可)

  • 解压命令,例如
unzip Restoring-Extremely-Dark-Images-In-Real-Time-main.zip 
1-1

📘 环境搭建


1-3

激活一个 PyTorch 1.4 的已有环境(我的博文已经安装过很多个版本、此处不再重复赘述)

conda activate torch14

# 安装一些我的环境运行该代码、缺少的库

pip install rawpy
pip install ptflops


📘 Demo 测试运行


cd Restoring-Extremely-Dark-Images-In-Real-Time

python demo.py
  • 运行输出如下
python demo.py

# GPU 占用 不会很高


...... Loading all files to CPU RAM

Image No.: 1, Amplification_m=1: 53.080570220947266
Image No.: 2, Amplification_m=1: 22.907602310180664
Image No.: 3, Amplification_m=1: 45.878238677978516

Files loaded to CPU RAM......


 Network parameters : 784768

Device on GPU: True
Restored images saved in DEMO_RESTORED_IMAGES directory

2-1

📘 时间内存复杂度测评


Measure Time-Memory Complexity

  • python time_complexity.py
  • 运行效果如下
 python time_complexity.py

---Our Model parameters : 784768


---SID model parameters : 7760748

Computational complexity of Our model for a 8MP image:   41.38 GMac
Computational complexity of SID model for a 8MP image:   440.46 GMac
Beginning Warmup...
Time taken by our model on CPU for 8MP image : 1.0671975135803222 seconds
Time taken by SID model on CPU for 8MP image : 8.417949628829955 seconds


📘 训练


训练部分、参考 train_test_ours/train.py 即可


暂不展开、以后如果项目中用到、有需要再补充

3-1

📕 附源码+论文


这些其实都很好下载、代码此次也没有改动、即可顺利运行

链接:https://pan.baidu.com/s/129MAPqMJtNp1v57gHZDMCA 
提取码:moli

📕 这篇文章可以带给我们的思考


翻译部分、参考链接

0-6

特色

  • 轻量化
  • 图像修复+目标检测 结合
  • 突出解决实际模型部署落地中的困难点:
  • 修复网络、单张图像推理速度慢
  • 暗图像目标检测存在困难

这是一个 图像修复+目标检测 结合 针对 实际落地存在的现实困难 提出的解决方案,也许可以成为我们小伙伴,创作一篇文章(Paper)的灵感基石

0-5

🚀🚀 墨理学AI


作为全网 AI 领域 干货最多的博主之一
❤️ 不负光阴不负卿
❤️点赞、评论鼓励博主的每一分认真创作

博主简介:软件工程硕士、已毕业、总计 5w 读者 粉丝

  • 🍊 计算机视觉:超分重建、图像修复、目标检测、风格迁移 等领域 稍有所学
  • 🍊 AI 工程化:Ncnn、MNN、TensorRT 正在 学习
  • 🍊 C++、Python、Java 略懂一二

喜欢请关注 墨理学AI

取经路上,让墨理学AI 陪你畅享更多有趣AI

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容