【Python载入数据】用scipy.io通过mat文件在Python和Matlab/Octave之间进行数据交换

用scipy.io通过mat文件在Python和Matlab/Octave之间进行数据交换

点击打开链接

http://docs.scipy.org/doc/scipy/reference/tutorial/io.html

如果更喜欢用python或Octave/Matlab,但又想兼而有之, 可以考虑

File IO (scipy.io)

See also

numpy-reference.routines.io(in numpy)

MATLAB files

loadmat(file_name[, mdict, appendmat])Load MATLAB file

savemat(file_name, mdict[, appendmat, ...])Save a dictionary of names and arrays into a MATLAB-style .mat file.

whosmat(file_name[, appendmat])List variables inside a MATLAB file

The basic functions

We’ll start by importingscipy.ioand calling itsiofor convenience:

>>>

>>>importscipy.ioassio

If you are using IPython, try tab completing onsio. Among the many options, you will find:

sio.loadmatsio.savematsio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from whichloadmat,savematandwhosmatare imported. Withinsio.matlab, you will find themiomodule This module contains the machinery thatloadmatandsavematuse. From time to time you may find yourself re-using this machinery.

How do I start?

You may have a.matfile that you want to read into Scipy. Or, you want to pass some variables from Scipy / Numpy into MATLAB.

To save us using a MATLAB license, let’s start inOctave. Octave has MATLAB-compatible save and load functions. Start Octave (octaveat the command line for me):

octave:1>a=1:12a=123456789101112octave:2>a=reshape(a,[134])a=ans(:,:,1)=123ans(:,:,2)=456ans(:,:,3)=789ans(:,:,4)=101112octave:3>save-6octave_a.mata% MATLAB 6 compatibleoctave:4>lsoctave_a.matoctave_a.mat

Now, to Python:

>>>

>>>mat_contents=sio.loadmat('octave_a.mat')>>>mat_contents{'a': array([[[  1.,  4.,  7.,  10.],[  2.,  5.,  8.,  11.],[  3.,  6.,  9.,  12.]]]),'__version__': '1.0','__header__': 'MATLAB 5.0 MAT-file, written byOctave 3.6.3, 2013-02-17 21:02:11 UTC','__globals__': []}>>>oct_a=mat_contents['a']>>>oct_aarray([[[  1.,  4.,  7.,  10.],[  2.,  5.,  8.,  11.],[  3.,  6.,  9.,  12.]]])>>>oct_a.shape(1, 3, 4)

Now let’s try the other way round:

>>>

>>>importnumpyasnp>>>vect=np.arange(10)>>>vect.shape(10,)>>>sio.savemat('np_vector.mat',{'vect':vect})

Then back to Octave:

octave:8>loadnp_vector.matoctave:9>vectvect=0123456789octave:10>size(vect)ans=110

If you want to inspect the contents of a MATLAB file without reading the data into memory, use thewhosmatcommand:

>>>

>>>sio.whosmat('octave_a.mat')[('a', (1, 3, 4), 'double')]

whosmatreturns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape and data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array of shape (1, 1).

octave:11>my_struct=struct('field1',1,'field2',2)my_struct={field1=1field2=2}octave:12>save-6octave_struct.matmy_struct

We can load this in Python:

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat')>>>mat_contents{'my_struct': array([[([[1.0]], [[2.0]])]],dtype=[('field1', 'O'), ('field2', 'O')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, written by Octave 3.6.3, 2013-02-17 21:23:14 UTC', '__globals__': []}>>>oct_struct=mat_contents['my_struct']>>>oct_struct.shape(1, 1)>>>val=oct_struct[0,0]>>>val([[1.0]], [[2.0]])>>>val['field1']array([[ 1.]])>>>val['field2']array([[ 2.]])>>>val.dtypedtype([('field1', 'O'), ('field2', 'O')])

In versions of Scipy from 0.12.0, MATLAB structs come back as numpy structured arrays, with fields named for the struct fields. You can see the field names in thedtypeoutput above. Note also:

>>>

>>>val=oct_struct[0,0]

and:

octave:13>size(my_struct)ans=11

So, in MATLAB, the struct array must be at least 2D, and we replicate that when we read into Scipy. If you want all length 1 dimensions squeezed out, try this:

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat',squeeze_me=True)>>>oct_struct=mat_contents['my_struct']>>>oct_struct.shape()

Sometimes, it’s more convenient to load the MATLAB structs as python objects rather than numpy structured arrays - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use thestruct_as_record=Falseparameter setting toloadmat.

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat',struct_as_record=False)>>>oct_struct=mat_contents['my_struct']>>>oct_struct[0,0].field1array([[ 1.]])

struct_as_record=Falseworks nicely withsqueeze_me:

>>>

>>>mat_contents=sio.loadmat('octave_struct.mat',struct_as_record=False,squeeze_me=True)>>>oct_struct=mat_contents['my_struct']>>>oct_struct.shape# but no - it's a scalarTraceback (most recent call last):File"", line1, inAttributeError:'mat_struct' object has no attribute 'shape'>>>type(oct_struct)>>>oct_struct.field11.0

Saving struct arrays can be done in various ways. One simple method is to use dicts:

>>>

>>>a_dict={'field1':0.5,'field2':'a string'}>>>sio.savemat('saved_struct.mat',{'a_dict':a_dict})

loaded as:

octave:21>loadsaved_structoctave:22>a_dicta_dict=scalarstructurecontainingthefields:field2=astringfield1=0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

>>>

>>>dt=[('f1','f8'),('f2','S10')]>>>arr=np.zeros((2,),dtype=dt)>>>arrarray([(0.0, ''), (0.0, '')],dtype=[('f1', '>>arr[0]['f1']=0.5>>>arr[0]['f2']='python'>>>arr[1]['f1']=99>>>arr[1]['f2']='not perl'>>>sio.savemat('np_struct_arr.mat',{'arr':arr})

MATLAB cell arrays

Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type of MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

octave:14>my_cells={1,[2,3]}my_cells={[1,1]=1[1,2]=23}octave:15>save-6octave_cells.matmy_cells

Back to Python:

>>>

>>>mat_contents=sio.loadmat('octave_cells.mat')>>>oct_cells=mat_contents['my_cells']>>>print(oct_cells.dtype)object>>>val=oct_cells[0,0]>>>valarray([[ 1.]])>>>print(val.dtype)float64

Saving to a MATLAB cell array just involves making a numpy object array:

>>>

>>>obj_arr=np.zeros((2,),dtype=np.object)>>>obj_arr[0]=1>>>obj_arr[1]='a string'>>>obj_arrarray([1, 'a string'], dtype=object)>>>sio.savemat('np_cells.mat',{'obj_arr':obj_arr})

octave:16>loadnp_cells.matoctave:17>obj_arrobj_arr={[1,1]=1[2,1]=astring}

IDL files

readsav(file_name[, idict, python_dict, ...])Read an IDL .sav file

Matrix Market files

mminfo(source)Queries the contents of the Matrix Market file ‘filename’ to extract size and storage information.

mmread(source)Reads the contents of a Matrix Market file ‘filename’ into a matrix.

mmwrite(target, a[, comment, field, precision])Writes the sparse or dense arrayato a Matrix Market formatted file.

Wav sound files (scipy.io.wavfile)

read(filename[, mmap])Return the sample rate (in samples/sec) and data from a WAV file

write(filename, rate, data)Write a numpy array as a WAV file

Arff files (scipy.io.arff)

Module to read ARFF files, which are the standard data format for WEKA.

ARFF is a text file format which support numerical, string and data values. The format can also represent missing data and sparse data.

See theWEKA websitefor more details about arff format and available datasets.

Examples

>>>

>>>fromscipy.ioimportarff>>>fromcStringIOimportStringIO>>>content="""...@relation foo...@attribute width  numeric...@attribute height numeric...@attribute color  {red,green,blue,yellow,black}...@data...5.0,3.25,blue...4.5,3.75,green...3.0,4.00,red...""">>>f=StringIO(content)>>>data,meta=arff.loadarff(f)>>>dataarray([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],dtype=[('width', '>>metaDataset: foowidth's type is numericheight's type is numericcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')

loadarff(f)Read an arff file.

Netcdf (scipy.io.netcdf)

netcdf_file(filename[, mode, mmap, version])A file object for NetCDF data.

Allows reading of NetCDF files (version ofpupynerepackage)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容

  • !~~~终于开始了在Coursera上的第一个编程练习 。。。 下面就是这次作业的介绍了~: Introducti...
    东皇Amrzs阅读 9,628评论 9 7
  • 当哈里遇上萨利 第一次见面他说她很迷人她说她讨厌他 第二次见面他看见她在和他吻别她以为他认不出她 第三次见面他和她...
    没有人陪你流浪阅读 451评论 0 1
  • 说起爱情,让我想起了茨威格的《一个陌生女人的来信》这本书。 还记得自己曾经为书中女子悲惨的一生哭得死去活来,感...
    樱花牧道阅读 461评论 0 1
  • 我不知道某些文字是不是应该被陈述,我不知道有些悲伤该不该被表露。 奶奶昨天走了,脑子里一片空白,不知忧伤。 没有地...
    蘑菇蘑菇u阅读 227评论 0 0