基于Vivado HLS在zedboard中的Sobel滤波算法实现

平台:zedboard + Webcam
工具:g++4.6 + VIVADO HLS + XILINX EDK + XILINX SDK
系统:ubuntu12.04

总体设计思路

image

sobel 算法理论基础

** 索贝尔算子**(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量。

image

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

image
Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1) 
  + (-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y) 
  + (-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)
  = [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]

Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)
   + 0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)
   + (-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1)
   = [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)]-[f(x-1, y+1) + 2*f(x,y+1)+f(x+1,y+1)]

其中f(a,b),表示图像(a,b)点的灰度值;

图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

image

通常,为了提高效率 使用不开平方的近似值:


image

如果梯度G大于某一阀值则认为该点(x,y)为边缘点

然后可用以下公式计算梯度方向:

image

Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。

流程

HLS算法验证与实现

算法验证包括算法C/C++实现,综合编译仿真,实现导出pcore用于------->XLINX EDK

EDK硬件 工程搭建

EDK中主要搭建zedboard硬件平台,实现VDMA(用AXI-Stream),HDMI,DDR等等,生成system.bit,用于连同uboot、fsbl生成zedboard bootload (BOOT.BIN)

参考:zedboard启动过程分析 , zedboard 构建嵌入式linux

LINUX系统移植

准备一张>8G的SD卡,分区为FAT32+EXT4(其中EXT4为文件系统>4GB,FAT分区为内核 设备树 bootloader) 可以采用gparted分区工具完成,apt-get install gparted
系统移植包括内核镜像的编译,bootloader的移植,设备树的编译,文件系统的移植
具体移植步骤参见
内核镜像地址:git clone http://github.com/Digilent/linux-3.3.digilent.git)
uboot源码: git clone git://git.xiinx.com/u-boot-xarm.git
设备树在内核中可以找到,将设备树,内核镜像,BOOT.BIN拷贝到SD卡中FAT分区中
文件系统 , 直接拷贝到SD卡中EXT4分区中

LINUX VDMA驱动应用程序编写与实现

编写驱动程序是为了我们能在PS中对VDMA进行管理和控制。前提是在底层中我们已经做好了所有相关的硬件设计等等。
移植OPENCV库:用于对比FPGA算法处理速度比较,有两种方法移植OPENCV库,
1: apt-get install libopencv-dev python-opencv
2: opencv下载源码地址
编译步骤参考:基于opencv网络摄像头在ubuntu下的视频获取

结果展示

FPGA硬件实现Sobel效果

OPENCV软件实现Sobel
image

处理时间显示

结果分析

上图处理时间中 640*480的视频

1:opencv处理一帧的时间0.148554s 大约为7帧每秒

2:fpga硬件实现一帧总时间(算法时间+VDMA拷贝时间)

3:fpga硬件实现一帧的算法时间,不包含拷贝DMA时间

在cortex A9 700MHZ 速度中 ,FPGA实现的算法速度比OPENCV软件实现速度快50-100倍,FPGA一秒钟可以处理500帧图像,OPENCV只能处理10张不到

但是缺点是,视频拷贝花费了太多的时间。所以我个人认为FPGA处理图像不在算法实现有多复杂与困难,因为FPGA的并行率理论上是无穷的,但是视频流的输入输出的速度直接决定了处理速度。暂时没想到好的方法解决。

参考

使用HLS各种问题
Sobel边缘检测算法
shakithweblog博客

作者:xiabodan

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容

  • 边缘检测是图像处理和计算机视觉的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点,图像属性中的显著变化通常...
    Daniel大人阅读 6,077评论 0 0
  • 1、阈值分割 1.1 简介 图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成...
    木夜溯阅读 22,575评论 9 15
  • 1、阈值分割 1.1 简介 图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成...
    Lornatang阅读 9,470评论 0 5
  • 在这篇文章中,我们将学习一下图像中梯度的应用 一:什么是梯度? 在高等数学中我们了解到梯度不是一个实数,他是一个向...
    云时之间阅读 603评论 0 0
  • 还有多少没有完成的梦想,没有到达的远方,没有说出口的喜欢,年轻人你太瞻前顾后,这样一点也不酷。
    亲昵称已被使用阅读 172评论 0 0