【面试现场】(3)什么是Bitmap算法?

所有90后的程序员:Select count(distinct Name) as 用户数 from table whare age = '90后' and Occupation = '程序员' ;

使用苹果手机或者00后的用户:Select count(distinct Name) as 用户数 from table whare Phone = '苹果' or age = '00后' ;

1. 给定长度是10的bitmap,每一个bit位分别对应着从0到9的10个整型数。此时bitmap的所有位都是0

2. 把整型数4存入bitmap,对应存储的位置就是下标为4的位置,将此bit置为1

3. 把整型数2存入bitmap,对应存储的位置就是下标为2的位置,将此bit置为1。

4. 把整型数1存入bitmap,对应存储的位置就是下标为1的位置,将此bit置为1。

5. 把整型数3存入bitmap,对应存储的位置就是下标为3的位置,将此bit置为1。

Bitmap方便查询,还可以去除掉重复的整型数。

1. 建立用户名和用户ID的映射:

2. 让每一个标签存储包含此标签的所有用户ID,每一个标签都是一个独立的Bitmap。

3. 这样,实现用户的去重和查询统计,就变得一目了然:

1. 如何查找使用苹果手机的程序员用户?

2. 如何查找所有男性或者00后的用户?

非90后用户实际上只有1个,而不是图中得到的8个结果,所以不能直接进行非运算。

如何求出呢?我们可以使用异或操作,即相同位为0,不同位为1。

25769803776L = 11000000000000000000000000000000000B

8589947086L = 1000000000000000000011000011001110B

1.解析Word0,得知当前RLW横跨的空Word数量为0,后面有连续3个普通Word。

2.计算出当前RLW后方连续普通Word的最大ID是 64 X (0 + 3) -1 = 191。

3. 由于 191 < 400003,所以新ID必然在下一个RLW(Word4)之后。

4.解析Word4,得知当前RLW横跨的空Word数量为6247,后面有连续1个普通Word。

5.计算出当前RLW(Word4)后方连续普通Word的最大ID是191 + (6247 + 1)X64 = 400063。

6.由于400003 < 400063,因此新ID 400003的正确位置就在当前RLW(Word4)的后方普通Word,也就是Word5当中。

最终插入结果如下:

官方说明如下:

* Though you can set the bits in any order (e.g., set(100), set(10), set(1),

* you will typically get better performance if you set the bits in increasing order (e.g., set(1), set(10), set(100)).

*

* Setting a bit that is larger than any of the current set bit

* is a constant time operation. Setting a bit that is smaller than an

* already set bit can require time proportional to the compressed

* size of the bitmap, as the bitmap may need to be rewritten.

几点说明:

1. 该项目最初的技术选型并非Mysql,而是内存数据库hana。本文为了便于理解,把最初的存储方案写成了Mysq数据库。

1.文中介绍的Bitmap优化方法在一定程度上做了简化,源码中的逻辑要复杂得多。比如对于插入数据400003的定位,和实际步骤是有出入的。

2.如果同学们有兴趣,可以亲自去阅读源码,甚至是尝试实现自己的Bitmap算法。虽然要花不少时间,但这确实是一种很好的学习方法。

EWAHCompressedBitmap对应的maven依赖如下:

<dependency>

  <groupId>com.googlecode.javaewah</groupId>

  <artifactId>JavaEWAH</artifactId>

  <version>1.1.0</version>

</dependency>

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容