Description
Given an unsorted array nums
, reorder it in-place such that nums[0] <= nums[1] >= nums[2] <= nums[3]...
.
For example, given nums = [3, 5, 2, 1, 6, 4]
, one possible answer is [1, 6, 2, 5, 3, 4]
.
Solution
Greedy, time O(n), space O(1)
这道题用partition不是很好做,会变成跟Wiggle sort II差不多复杂。
解决这道题目有更取巧的办法。用贪心算法即可。
I have to say nobody explains the sufficiency of the following algo:
The final sorted nums needs to satisfy two conditions:
If i is odd, then nums[i] >= nums[i - 1];
If i is even, then nums[i] <= nums[i - 1].
The code is just to fix the orderings of nums that do not satisfy 1
and 2.
why is this greedy solution can ensure previous sequences and coming sequences W.R.T position i wiggled?
My explanation is recursive,
suppose nums[0 … i - 1] is wiggled, for position i:
if i is odd, we already have, nums[i - 2] >= nums[i - 1],
if nums[i - 1] <= nums[i], then we does not need to do anything, its already wiggled.
if nums[i - 1] > nums[i], then we swap element at i -1 and i. Due to previous wiggled elements (nums[i - 2] >= nums[i - 1]), we know after swap the sequence is ensured to be nums[i - 2] > nums[i - 1] < nums[i], which is wiggled.
similarly,
if i is even, we already have, nums[i - 2] <= nums[i - 1],
if nums[i - 1] >= nums[i], pass
if nums[i - 1] < nums[i], after swap, we are sure to have wiggled nums[i - 2] < nums[i - 1] > nums[i].
The same recursive solution applies to all the elements in the sequence, ensuring the algo success.
class Solution {
public void wiggleSort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
for (int i = 1; i < nums.length; ++i) {
if ((i & 1) == 0 == nums[i] > nums[i - 1]) {
swap(nums, i, i - 1);
}
}
}
public void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
}