spark源码阅读之executor模块③

本文基于Spark 1.6.3源码,采用一步一步深入的方式来展开阅读,本文是为了纪录自己在阅读源码时候的思路,看完一遍真的很容易忘记,写一篇文章梳理一遍可以加深印象。

spark源码阅读之executor模块①中,我们创建了DriverEndpoint并说明它会周期性的通过给自己发送ReviveOffers消息而去调用makeOffers()方法,从而实现为executor分配资源并加载Tasks。
spark源码阅读之executor模块②中,我们分析了application的提交、driver的初始化以及在workers上分配了executors,最后也是调用了DriverEndpoint的makeOffers()方法给executors分配Tasks。
所以这一章,我们就以DriverEndpoint的makeOffers()方法为起点来分析:如何给executors加载Tasks,如何执行这些Tasks。

分配Tasks

下面就来看一下makeOffers方法的源码

// Make fake resource offers on all executors
private def makeOffers() {
  // Filter out executors under killing
  // 选出还活着的executors,然后准备分配资源
  val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
  val workOffers = activeExecutors.map { case (id, executorData) =>
    new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
  }.toSeq
  launchTasks(scheduler.resourceOffers(workOffers))   //先调用scheduler的resourceOffers方法分配资源,然后再launchTasks
}

代码中的scheduler是TaskSchedulerImpl的实例,resourceOffers方法的作用是给executors分配封装好的TaskSet,这其中的工作主要由TaskSchedulerImpl和DAGScheduler来完成,这部分属于调度模块的内容,准备放到调度模块再分析。

在分配好Task之后,调用launchTasks方法来加载Tasks

// Launch tasks returned by a set of resource offers
private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
  for (task <- tasks.flatten) {
    val serializedTask: ByteBuffer = ser.serialize(task)    //序列化task
    if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
      scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
        try {
          var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
            "spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
            "spark.akka.frameSize or using broadcast variables for large values."
          msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
            AkkaUtils.reservedSizeBytes)
          taskSetMgr.abort(msg)
        } catch {
          case e: Exception => logError("Exception in error callback", e)
        }
      }
    }
    else {
      val executorData: ExecutorData = executorDataMap(task.executorId)   //取出封装executor信息的executorData
      executorData.freeCores -= scheduler.CPUS_PER_TASK
      executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))    //向executor的rpcEndpoint发送LaunchTask的消息
    }
  }
}

这里有个限制,序列化之后的Task的大小,如果大于spark.akka.frameSize (默认128M) - reservedSizeBytes(固定200KB),会报错,提示可以调整spark.akka.frameSize大小或者采用广播的方法来传递大消息体。

如果是满足要求的Task,将序列化之后的Task数据包装后,拿出对应的ExecutorData实例,发送LaunchTask的消息,给其executorEndpoint。

CoarseGrainedExecutorBackend在收到LaunchTask请求后的代码如下:

case LaunchTask(data) =>    //executor收到了LaunchTask的请求
  if (executor == null) {
    logError("Received LaunchTask command but executor was null")
    System.exit(1)
  } else {
    val taskDesc = ser.deserialize[TaskDescription](data.value) //将收到的task反序列化
    logInfo("Got assigned task " + taskDesc.taskId)
    executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,   //加载task
      taskDesc.name, taskDesc.serializedTask)
  }

首先将收到的Task反序列化,然后调用executor的launchTask方法加载Task,launchTask方法如下:

def launchTask(
    context: ExecutorBackend,
    taskId: Long,
    attemptNumber: Int,
    taskName: String,
    serializedTask: ByteBuffer): Unit = {
  val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
    serializedTask)   //将task的信息封装成TaskRunner
  runningTasks.put(taskId, tr)
  threadPool.execute(tr)    //将TaskRunner放到threadPool中去执行
}

在此方法中,将Task数据封装成一个TaskRunner,然后放到线程池中去执行,可见实际执行Task的过程体现在TaskRunner的run()方法中,TaskRunner的run方法分为三个部分:

  1. 反序列化并下载Task的依赖
  2. 执行Task
  3. 处理返回的结果

Task的执行

第一部分没什么好说的,我们一起来看看第二部分,以下是run方法的截选:

override def run(): Unit = {
......省略不重要代码
// Run the actual task and measure its runtime.
// 开始执行Task且确定它的运行时间
taskStart = System.currentTimeMillis()
var threwException = true
val (value, accumUpdates) = try {
  val res = task.run(   //最终调用Task的run方法来执行Task
    taskAttemptId = taskId,
    attemptNumber = attemptNumber,
    metricsSystem = env.metricsSystem)
  threwException = false
  res
......

task是反序列化得到的Task实例,调用其run方法来执行Task

final def run(
  taskAttemptId: Long,
  attemptNumber: Int,
  metricsSystem: MetricsSystem)
: (T, AccumulatorUpdates) = {
  context = new TaskContextImpl(
    stageId,
    partitionId,
    taskAttemptId,
    attemptNumber,
    taskMemoryManager,
    metricsSystem,
    internalAccumulators,
    runningLocally = false)   //首先构造一个TaskContext,然后将参数配置到这个TaskContext中
  TaskContext.setTaskContext(context)
  context.taskMetrics.setHostname(Utils.localHostName())
  context.taskMetrics.setAccumulatorsUpdater(context.collectInternalAccumulators)
  taskThread = Thread.currentThread()
  if (_killed) {
    kill(interruptThread = false)
  }
  try {
    (runTask(context), context.collectAccumulators())   //运行Task
  } catch {
    case e: Throwable =>
      // Catch all errors; run task failure callbacks, and rethrow the exception.
      try {
        context.markTaskFailed(e)
      } catch {
        case t: Throwable =>
          e.addSuppressed(t)
      }
      throw e
  } finally {
    // Call the task completion callbacks.
    // Task结束时的回调函数
    context.markTaskCompleted()
    try {
      Utils.tryLogNonFatalError {
        // Release memory used by this thread for unrolling blocks
        SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask()
        SparkEnv.get.blockManager.memoryStore.releasePendingUnrollMemoryForThisTask()
        // Notify any tasks waiting for execution memory to be freed to wake up and try to
        // acquire memory again. This makes impossible the scenario where a task sleeps forever
        // because there are no other tasks left to notify it. Since this is safe to do but may
        // not be strictly necessary, we should revisit whether we can remove this in the future.
        val memoryManager = SparkEnv.get.memoryManager
        memoryManager.synchronized { memoryManager.notifyAll() }
      }
    } finally {
      TaskContext.unset()
    }
  }
}

以上run方法中,首先创建了一个TaskContext保留Task的上下文,然后调用runTask方法来运行这个Task,最后结束时调用回调函数markTaskCompleted,来完成最终结果的处理。

runTask方法在不同类型的Task中会有不同的实现,主要分析ShuffleMapTask和ResultTask
针对最后一个stage生成的Task就叫做ResultTask,ResultTask会将最终计算结果汇报道driver端,具体实现如下:

override def runTask(context: TaskContext): U = {
  // Deserialize the RDD and the func using the broadcast variables.
  val deserializeStartTime = System.currentTimeMillis()
  val ser = SparkEnv.get.closureSerializer.newInstance()  //获取用于反序列化的实例
  // 获取RDD和作用于RDD结果的函数
  val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
    ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
  _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
  metrics = Some(context.taskMetrics)   //Task的metrics信息
  // 调用rdd.iterator执行rdd上的计算
  func(context, rdd.iterator(partition, context)) 
}

ShuffleMapTask计算得到的是中间结果,且需要通过shuffle策略来生成中间文件落地之后供下游Task来fetch,具体实现放在shuffle模块详解,这里展示其runTask方法

override def runTask(context: TaskContext): MapStatus = {
  // Deserialize the RDD using the broadcast variable.
  // 反序列化广播变量taskBinary得到RDD
  val deserializeStartTime = System.currentTimeMillis()
  val ser = SparkEnv.get.closureSerializer.newInstance()
  val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
    ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
  _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
  metrics = Some(context.taskMetrics)
  var writer: ShuffleWriter[Any, Any] = null
  try {
    // 获得shuffle manager
    val manager = SparkEnv.get.shuffleManager
    writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)   // 获得shuffle writer
    // 首先调用RDD的iterator,如果这个RDD已经cache或者checkpoint了,直接读取结果,否则就开始计算
    // 计算结果调用shuffle write写入本地文件系统
    writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
    // 返回数据的元数据信息,包括location和size
    writer.stop(success = true).get
  } catch {
    case e: Exception =>
      try {
        if (writer != null) {
          writer.stop(success = false)
        }
      } catch {
        case e: Exception =>
          log.debug("Could not stop writer", e)
      }
      throw e
  }
}

Task计算结果处理

接下来我们再来看第三部分,处理返回的结果,以下截选,Executor的run方法中的其中一段

val resultSer = env.serializer.newInstance()  //获取序列化工具
val beforeSerialization = System.currentTimeMillis()
val valueBytes = resultSer.serialize(value)   //序列化结果
val afterSerialization = System.currentTimeMillis()
for (m <- task.metrics) {
  // Deserialization happens in two parts: first, we deserialize a Task object, which
  // includes the Partition. Second, Task.run() deserializes the RDD and function to be run.
  m.setExecutorDeserializeTime(
    (taskStart - deserializeStartTime) + task.executorDeserializeTime)
  // We need to subtract Task.run()'s deserialization time to avoid double-counting
  m.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime)
  m.setJvmGCTime(computeTotalGcTime() - startGCTime)
  m.setResultSerializationTime(afterSerialization - beforeSerialization)
  m.updateAccumulators()
}
// 首先将结果放入到DirectTaskResult
val directResult = new DirectTaskResult(valueBytes, accumUpdates, task.metrics.orNull)
val serializedDirectResult = ser.serialize(directResult)    //序列化结果
val resultSize = serializedDirectResult.limit   //序列化结果的大小
// directSend = sending directly back to the driver
// 将结果回传给driver
val serializedResult: ByteBuffer = {
  if (maxResultSize > 0 && resultSize > maxResultSize) {    // 如果序列化结果大于maxResultSize,直接抛弃,默认1GB
    logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " +
      s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
      s"dropping it.")
    ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
  } else if (resultSize >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {   //“较大”的结果:akkaFrameSize默认128M
    val blockId = TaskResultBlockId(taskId)
    env.blockManager.putBytes(    // 结果存入blockManager
      blockId, serializedDirectResult, StorageLevel.MEMORY_AND_DISK_SER)
    logInfo(
      s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
    ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
  } else {
    logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")
    serializedDirectResult // 如果结果不大,直接回传给driver
  }
}
// execBackend是ExecutorBackend的一个实例,实际上是Executor与Driver通信的接口
execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult) 

这里回传给Driver时结果大小的限制与上文中所述限制一样,这段代码最后将结果发回Driver端,Driver端在收到statusUpdate消息之后,会调用TaskSchedulerImpl的statusUpdate方法来处理收到的Task运行结果,并将完成的资源通过makeOffers方法释放出来,具体实现如下:

case StatusUpdate(executorId, taskId, state, data) =>  // 收到Task的运行结果
  scheduler.statusUpdate(taskId, state, data.value)
  if (TaskState.isFinished(state)) {
    executorDataMap.get(executorId) match {
      case Some(executorInfo) =>
        executorInfo.freeCores += scheduler.CPUS_PER_TASK
        makeOffers(executorId)
      case None =>
        // Ignoring the update since we don't know about the executor.
        logWarning(s"Ignored task status update ($taskId state $state) " +
          s"from unknown executor with ID $executorId")
    }
  }

在TaskSchedulerImpl的statusUpdate方法中,如果返回的Task状态是FINISHED,就调用enqueueSuccessfulTask方法来处理结果,如果返回的状态有异常(FAILED、KILLED、LOST),那么会调用enqueueFailedTask方法来处理结果,逻辑如下(截选statusUpdate)

taskIdToTaskSetManager.get(tid) match {
  case Some(taskSet) =>
    // FINISHED_STATES = Set(FINISHED, FAILED, KILLED, LOST)
    if (TaskState.isFinished(state)) {    //如果这个任务是已经结束了的状态
      taskIdToTaskSetManager.remove(tid)
      taskIdToExecutorId.remove(tid).foreach { execId =>
        if (executorIdToTaskCount.contains(execId)) {
          executorIdToTaskCount(execId) -= 1    //清理一些缓存
        }
      }
    }
    if (state == TaskState.FINISHED) {    // 如果返回的状态值是FINISHED,说明是正常结束了
      taskSet.removeRunningTask(tid)
      taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData) //调用enqueueSuccessfulTask进行处理
    } else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {   //如果是其他的状态,说明是任务失败了
      taskSet.removeRunningTask(tid)
      taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
    }
  case None =>
    logError(
      ("Ignoring update with state %s for TID %s because its task set is gone (this is " +
        "likely the result of receiving duplicate task finished status updates)")
        .format(state, tid))
}

在enqueueSuccessfulTask方法中处理的Task结果分为两种:DirectTaskResult和IndirectTaskResult,IndirectTaskResult需要通过blockId到BlockManager中获取结果,结果数据反序列化之后,调用TaskSchedulerImpl的handleSuccessfulTask方法来处理结果,具体实现如下:

def enqueueSuccessfulTask(    //处理得到的计算结果
  taskSetManager: TaskSetManager, tid: Long, serializedData: ByteBuffer) {
  getTaskResultExecutor.execute(new Runnable {
    override def run(): Unit = Utils.logUncaughtExceptions {
      try {
        val (result, size) = serializer.get().deserialize[TaskResult[_]](serializedData) match {
          case directResult: DirectTaskResult[_] => //如果是directResult
            if (!taskSetManager.canFetchMoreResults(serializedData.limit())) {
              return
            }
            // deserialize "value" without holding any lock so that it won't block other threads.
            // We should call it here, so that when it's called again in
            // "TaskSetManager.handleSuccessfulTask", it does not need to deserialize the value.
            directResult.value()
            (directResult, serializedData.limit())
          case IndirectTaskResult(blockId, size) => //如果是IndirectTaskResult,那么需要通过blickId到BlockManager中去获取结果:“较
            if (!taskSetManager.canFetchMoreResults(size)) {
              // dropped by executor if size is larger than maxResultSize
              sparkEnv.blockManager.master.removeBlock(blockId)
              return
            }
            logDebug("Fetching indirect task result for TID %s".format(tid))
            scheduler.handleTaskGettingResult(taskSetManager, tid)
            val serializedTaskResult = sparkEnv.blockManager.getRemoteBytes(blockId)
            if (!serializedTaskResult.isDefined) {
              /* We won't be able to get the task result if the machine that ran the task failed
               * between when the task ended and when we tried to fetch the result, or if the
               * block manager had to flush the result. */
              scheduler.handleFailedTask(
                taskSetManager, tid, TaskState.FINISHED, TaskResultLost)
              return
            }
            val deserializedResult = serializer.get().deserialize[DirectTaskResult[_]](
              serializedTaskResult.get)
            sparkEnv.blockManager.master.removeBlock(blockId)
            (deserializedResult, size)
        }
        result.metrics.setResultSize(size)
        scheduler.handleSuccessfulTask(taskSetManager, tid, result)  //调用handleSuccessfulTask来处理结果
      } catch {
        case cnf: ClassNotFoundException =>
          val loader = Thread.currentThread.getContextClassLoader
          taskSetManager.abort("ClassNotFound with classloader: " + loader)
        // Matching NonFatal so we don't catch the ControlThrowable from the "return" above.
        case NonFatal(ex) =>
          logError("Exception while getting task result", ex)
          taskSetManager.abort("Exception while getting task result: %s".format(ex))
      }
    }
  })
}

TaskSchedulerImpl的handleSuccessfulTask方法中首先标记Task已经完成,然后会调用DAGScheduler的taskEnded方法处理结果,DAGScheduler中有一个自监测的DAGSchedulerEventProcessLoop实例,通过这个实例发送CompletionEvent的消息,最后调用DAGScheduler的handleTaskCompletion方法,具体实现如下:

/**
 * Called by the TaskSetManager to report task completions or failures.
  * TaskSetManager向DAGScheduler报告tasks是否成功处理
 */
def taskEnded(
    task: Task[_],
    reason: TaskEndReason,
    result: Any,
    accumUpdates: Map[Long, Any],
    taskInfo: TaskInfo,
    taskMetrics: TaskMetrics): Unit = {
  eventProcessLoop.post(
    CompletionEvent(task, reason, result, accumUpdates, taskInfo, taskMetrics))
}

eventProcessLoop其实就是DAGSchedulerEventProcessLoop的实例,用来监测DAGScheduler的自身状态,在其doOnReceive中通过模式匹配的方法对各种消息调用不同的方法来处理:

private def doOnReceive(event: DAGSchedulerEvent): Uni
    //如果提交的是一个JobSubmitted的Event,那么调用handleJobSubmitte
  case JobSubmitted(jobId, rdd, func, partitions, call
    dagScheduler.handleJobSubmitted(jobId, rdd, func, 
  case MapStageSubmitted(jobId, dependency, callSite, 
    dagScheduler.handleMapStageSubmitted(jobId, depend
  case StageCancelled(stageId) =>
    dagScheduler.handleStageCancellation(stageId)
  case JobCancelled(jobId) =>
    dagScheduler.handleJobCancellation(jobId)
  case JobGroupCancelled(groupId) =>
    dagScheduler.handleJobGroupCancelled(groupId)
  case AllJobsCancelled =>
    dagScheduler.doCancelAllJobs()
  case ExecutorAdded(execId, host) =>
    dagScheduler.handleExecutorAdded(execId, host)
  case ExecutorLost(execId) =>
    dagScheduler.handleExecutorLost(execId, fetchFaile
  case BeginEvent(task, taskInfo) =>
    dagScheduler.handleBeginEvent(task, taskInfo)
  case GettingResultEvent(taskInfo) =>
    dagScheduler.handleGetTaskResult(taskInfo)
  case completion @ CompletionEvent(task, reason, _, _
    dagScheduler.handleTaskCompletion(completion)
  case TaskSetFailed(taskSet, reason, exception) =>
    dagScheduler.handleTaskSetFailed(taskSet, reason, 
  case ResubmitFailedStages =>
    dagScheduler.resubmitFailedStages()
}

可见CompletionEvent消息调用了DAGScheduler的handleTaskCompletion方法,在这个方法中,针对两种Task(ResultTask和ShuffleMapTask)有不同的处理逻辑,如果是ResultTask,则job标记结束;如果是ShuffleMapTask则说明不是最后一个stage,调用MapOutputTrackerMaster将Task的运行结果注册到mapOutput,接下来下一个stage的Task就会通过shuffle read去读取这部分数据,这部分内容将在shuffle模块中说明,以下截选DAGScheduler的handleTaskCompletion方法:

task match {
  case rt: ResultTask[_, _] =>
    // Cast to ResultStage here because it's part of the ResultTask
    // TODO Refactor this out to a function that accepts a ResultStage
    val resultStage = stage.asInstanceOf[ResultStage]
    resultStage.activeJob match {
      case Some(job) =>
        if (!job.finished(rt.outputId)) {
          updateAccumulators(event)
          job.finished(rt.outputId) = true
          job.numFinished += 1
          // If the whole job has finished, remove it
          if (job.numFinished == job.numPartitions) {
            markStageAsFinished(resultStage)
            cleanupStateForJobAndIndependentStages(job)
            listenerBus.post(
              SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobSucceeded))
          }
          // taskSucceeded runs some user code that might throw an exception. Make sure
          // we are resilient against that.
          try {
            job.listener.taskSucceeded(rt.outputId, event.result)
          } catch {
            case e: Exception =>
              // TODO: Perhaps we want to mark the resultStage as failed?
              job.listener.jobFailed(new SparkDriverExecutionException(e))
          }
        }
      case None =>
        logInfo("Ignoring result from " + rt + " because its job has finished")
    }
  case smt: ShuffleMapTask => // 如果是ShuffleMapTask发来的Task Result
    val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
    updateAccumulators(event)
    val status = event.result.asInstanceOf[MapStatus]
    val execId = status.location.executorId
    logDebug("ShuffleMapTask finished on " + execId)
    if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
      logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
    } else {
      shuffleStage.addOutputLoc(smt.partitionId, status)
    }
    if (runningStages.contains(shuffleStage) && shuffleStage.pendingPartitions.isEmpty) {
      markStageAsFinished(shuffleStage)
      logInfo("looking for newly runnable stages")
      logInfo("running: " + runningStages)
      logInfo("waiting: " + waitingStages)
      logInfo("failed: " + failedStages)
      // We supply true to increment the epoch number here in case this is a
      // recomputation of the map outputs. In that case, some nodes may have cached
      // locations with holes (from when we detected the error) and will need the
      // epoch incremented to refetch them.
      // TODO: Only increment the epoch number if this is not the first time
      //       we registered these map outputs.
      mapOutputTracker.registerMapOutputs(  // 将Task的运行结果注册到mapOutputTracker
        shuffleStage.shuffleDep.shuffleId,
        shuffleStage.outputLocInMapOutputTrackerFormat(),
        changeEpoch = true)
      clearCacheLocs()
      if (!shuffleStage.isAvailable) {
        // Some tasks had failed; let's resubmit this shuffleStage
        // TODO: Lower-level scheduler should also deal with this
        logInfo("Resubmitting " + shuffleStage + " (" + shuffleStage.name +
          ") because some of its tasks had failed: " +
          shuffleStage.findMissingPartitions().mkString(", "))
        submitStage(shuffleStage)
      } else {
        // Mark any map-stage jobs waiting on this stage as finished
        if (shuffleStage.mapStageJobs.nonEmpty) {
          val stats = mapOutputTracker.getStatistics(shuffleStage.shuffleDep)
          for (job <- shuffleStage.mapStageJobs) {
            markMapStageJobAsFinished(job, stats)
          }
        }
      }

至此,Task运行结束,executor模块的源码阅读也告一段落,回顾executor模块的三篇文章,我们从SparkContext这个交互接口入手,详细描述了application是如何注册的,driver是如何生成的,driver和executor如何分配计算资源,分配完成之后又是怎样启动executor的,接着分析了Task是怎么分配给executor的,又是如何计算的,计算结果又做何处理。总结成一句话:executor负责Task的计算,并将计算结果回传给Driver。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容