矩特征

矩特征被广泛应用于图像识别、模式识别等方面。矩信息包含了对应图像不同类型的几何特征,如大小、形状、角度、位置等,一个轮廓矩代表一个轮廓、一幅图像、一组点集的全局特征。

1.矩的计算

Opencv提供了函数cv2.moments()来获取图像的moments特征,我们也将用这个函数获取的轮廓特征称为轮廓矩。轮廓矩描述了一个轮廓的重要特征,可以用来比较两个轮廓。

retval = cv2.moments(array,binaryImage)

式中有两个参数:

array:可以是点集,也可以是灰度图像或者二值图像。当它是点集时,函数会把这些点集当成是轮廓的顶点,把整个点集作为一条轮廓,而不是把它们当做独立的点来看待;

binaryImage:该参数为True时,array内所有的非零值都被处理为1.该参数仅在参数array为图像时有效。

该函数的返回值retval是矩特征,主要包括:

1)空间矩

零阶矩:m00;一阶矩:m10, m01;二阶矩:m20,m11,m02;三阶矩:m30,m21,m12, m03

2)中心矩

二阶中心矩:mu20, mu11, mu02;三阶中心矩:mu30, mu21, mu12, mu03

3)归一化中心矩

二阶Hu矩:nu20,, nu11, nu02;三阶Hu矩:nu30, nu21, nu12, nu03

大多数矩都是通过数学公式计算得到的抽象特征,但零阶矩“m00"的含义比较直观,表示一个轮廓的面积。假如有两个轮廓,不管它们出现在图像的哪个位置,我们都可以通过函数cv2.moments()的m00矩来判断其面积是否一致。在位置发生变化时,虽然轮廓的面积、周长等特征不变,但是耿高阶的特征会随着位置的变化而发生变化。

在很多情况下,我们希望比较不同位置的两个对象的一致性。解决这一问题的方法是引入中心矩。中心矩通过减去均值而获取平移不变性,因而能够比较不同位置的两个对象是否一致。

除了考虑平移不变性外,有时还会考虑缩放一致性,也就是希望图像在缩放前后能够拥有相同的特征值。中心矩没有这个属性。归一化中心矩通过除以物体的总尺寸而获得缩放不变性,它也有平移不变性。

在OpenCV中,cv2.moments()会同时计算上述空间矩、中心化矩和归一化中心矩。

2.计算轮廓的面积

函数cv2.contourArea()用于计算轮廓的面积。

retval = cv2.contourArea(contour [,oriented ])

有两个参数:

contour: 表示轮廓

oriented:是布尔值,当它为True时,返回的值带正/负号(表示轮廓是顺时针的还是逆时针的)。默认为False,返回的是绝对值。


代码
运算结果

两种方法求得的面积是一致的。

3.计算轮廓的长度

retval = cv2.arcLength(cure, closed)

cure:表示的是轮廓

closed: 是布尔值,表示轮廓是否是封闭的。True表示封闭

代码
部分轮廓展示


轮廓的值

注意:实际上这里得到的轮廓长度是浮点值,这里取整处理

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351