自然语言处理N天-Transformer学习(从seq2seq到Attention02)

新建 Microsoft PowerPoint 演示文稿 (2).jpg

这个算是在课程学习之外的探索,不过希望能尽快用到项目实践中。在文章里会引用较多的博客,文末会进行reference。
搜索Transformer机制,会发现高分结果基本上都源于一篇论文Jay Alammar的《The Illustrated Transformer》(图解Transformer),提到最多的Attention是Google的《Attention Is All You Need》。

  • 对于Transformer的运行机制了解即可,所以会基于这篇论文来学习Transformer,结合《Sklearn+Tensorflow》中Attention注意力机制一章完成基本的概念学习;
  • 找一个基于Transformer的项目练手

2.进入Transformer

本节内容学习自《从Seq2seq到Attention模型到Self Attention》
上一节介绍了seq2seq和attention model,其中attention model由于使用的是RNN,无法做到平行化处理,导致训练时间很长,直到2017年Google提出了Transformer模型。
本节中,教程将介绍Transformer模型。
Transformer模型主要包括了两大特点:self-attention 和 Multi-head。“The transformer”和Seq2seq模型皆包含两部分:Encoder和Decoder。
比较特别的是,”The transformer”中的Encoder是由6个Encoder堆积而成(paper当中N=6),Deocder同样也是使用6个Decoder堆积而成,这和过去的attention model只使用一个encoder/decoder是不同的。

Query、Key、Value

教程在这里介绍了attention model的两种解读方式,同时也说明了如何从attention model转到Transformer。

  • 在attention model中context vector(c_{i})是由attention score和input的乘积加权求和得到,hidden state(h_{t})是由输入句产生。context vector(c_{i})hidden state(h_{t})可以计算目标句。
  • 在attention is all you need 中使用了另一种说法重新解释
    输入句中的每个文字是由一系列成对的 <地址Key, 元素Value>所构成,而目标中的每个文字是Query,就可以用Key, Value, Query去重新解释如何计算context vector。
    通过计算目标Query和输入句中各个Key的相似性,得到每个Key对应Value的权重(权重代表讯息的重要性,即attention score);Value则是对应的讯息,再对Value进行加权求和,得到最终的context vector。

基于上面的Query、Key、Value,可以将之前attention model的Decoder公式进行重写(这算是重点吧)。
score e_{ij}=Similarity(Query, Key_{i})
使用softmax计算attention score(a_{i})softmax(sim_{i})=a_{i},进一步将attention score a_{i}乘上Value_{i}的序列和加总所得 = Attention(Query, Source)即context vector
===================================================================================
好吧,这部分公式推导我没好好看,直接照搬了。有兴趣的话可以对比一下。

三种attention类型

Transformer计算attention的方式有三种,

  • encoder self attention,在encoder中.
  • decoder self attention,在decoder中,
  • encoder-decoder attention, 这种attention算法和过去的attention model相似。
    就是这张著名的图了。
    分割线以下为Transformer的运行机制,最后我实在是看不懂,只能先列出来,找个例子敲出来试试看吧……

image.png

Encoder

计算encoder self attention
计算Multi-head attention
Residual Connections
Position-wise Feed-Forward Networks
Positional Encoding

Decoder

Masked multi-head attention

The Final Linear and Softmax Layer

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容