题目:
格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。
给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。
示例 1:
输入: 2
输出: [0,1,3,2]
解释:
00 - 0
01 - 1
11 - 3
10 - 2
对于给定的 n,其格雷编码序列并不唯一。
例如,[0,2,3,1] 也是一个有效的格雷编码序列。
00 - 0
10 - 2
11 - 3
01 - 1
示例 2:
输入: 0
输出: [0]
解释: 我们定义格雷编码序列必须以 0 开头。
给定编码总位数为 n 的格雷编码序列,其长度为 2n。当 n = 0 时,长度为 20 = 1。
因此,当 n = 0 时,其格雷编码序列为 [0]。
分析:
动态规划
按照动态规划或者说递归的思路去想,也就是从小的问题去解决小问题。
我们假设我们有了 n = 2 的解,然后考虑怎么得到 n = 3 的解。
n = 2 的解
00 - 0
10 - 2
11 - 3
01 - 1
如果再增加一位,无非是在最高位增加 0 或者 1,考虑先增加 0。由于加的是 0,其实数值并没有变化。
n = 3 的解,最高位是 0
000 - 0
010 - 2
011 - 3
001 - 1
再考虑增加 1,在 n = 2 的解基础上在最高位把 1 丢过去?
n = 3 的解
000 - 0
010 - 2
011 - 3
001 - 1
------------- 下面的是新增的
100 - 4
110 - 6
111 - 7
101 - 5
似乎没这么简单哈哈,第 4 行 001 和新增的第 5 行 100,有 3 个 bit 位不同了,当然不可以了。怎么解决呢?
很简单,第 5 行新增的数据最高位由之前的第 4 行的 0 变成了 1,所以其它位就不要变化了,直接把第 4 行的其它位拉过来,也就是 101。
接下来,为了使得第 6 行和第 5 行只有一位不同,由于第 5 行拉的第 4 行的低位,而第 4 行和第 3 行只有一位不同。所以第 6 行可以把第 3 行的低位拿过来。其他行同理,如下图。
蓝色部分由于最高位加的是 0 ,所以它的数值和 n = 2 的所有解的情况一样。而橙色部分由于最高位加了 1,所以值的话,就是在其对应的值上加 4,也就是 2^2,即2^(3-1)。所以我们的算法可以用迭代求出来了。
所以如果知道了 n = 2 的解的话,如果是 { 0, 1, 3, 2},那么 n = 3 的解就是 { 0, 1, 3, 2, 2 + 4, 3 + 4, 1 + 4, 0 + 4 },即 { 0 1 3 2 6 7 5 4 }。之前的解直接照搬过来,然后倒序把每个数加上2^(3-1) 添加到结果中即可。