【挖掘模型】:Python-DBSCAN算法

数据源:data (7).csv

data (7).csv

DBSCAN算法结果

DBSCAN模型

DBSCAN原理

# DBSCAN算法:将簇定义为密度相连的点最大集合,能够把具有足够高密度的区域划分为簇,并且可在噪声的空间数据集中发现任意形状的簇。
    # 密度:空间中任意一点的密度是以该点为圆心,以EPS为半径的圆区域内包含的点数目
    # 边界点:空间中某一点的密度,如果小于某一点给定的阈值minpts,则称为边界点
    # 噪声点:不属于核心点,也不属于边界点的点,也就是密度为1的点
# API:
    # model = sklearn.cluster.DBSCAN(eps_领域大小圆半径,min_samples_领域内,点的个数的阈值)
    # model.fit(data) 训练模型
    # model.fit_predict(data) 模型的预测方法

DBSCAN代码-A

import pandas
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
#导入数据
data = pandas.read_csv("F:\\python 数据挖掘分析实战\\Data\\data (7).csv")

eps = 0.2;
MinPts = 5;

model = DBSCAN(eps, MinPts)

model.fit(data)

data['type'] = model.fit_predict(data)

plt.scatter(
   data['x'], 
   data['y'],
   c=data['type']
)

DBSCAN代码-B

import numpy
import pandas
import matplotlib.pyplot as plt

#导入数据
data = pandas.read_csv("F:\\python 数据挖掘分析实战\\Data\\data (7).csv")

plt.scatter(
   data['x'], 
   data['y']
)

eps = 0.2;
MinPts = 5;

from sklearn.metrics.pairwise import euclidean_distances

ptses = []
dist = euclidean_distances(data)
for row in dist:
   #密度,空间中任意一点的密度是以该点为圆心、以 Eps 为半径的圆区域内包含的点数
   density = numpy.sum(row<eps)
   pts = 0;
   if density>MinPts:
       #核心点(Core Points)
       #空间中某一点的密度,如果大于某一给定阈值MinPts,则称该为核心点
       pts = 1
   elif density>1 :
       #边界点(Border Points)
       #空间中某一点的密度,如果小于某一给定阈值MinPts,则称该为边界点
       pts = 2
   else:
       #噪声点(Noise Points)
       #数据集中不属于核心点,也不属于边界点的点,也就是密度值为1的点
       pts = 0
   ptses.append(pts)

#把噪声点过滤掉,因为噪声点无法聚类,它们独自一类
corePoints = data[pandas.Series(ptses)!=0]

coreDist = euclidean_distances(corePoints)

#首先,把每个点的领域都作为一类
#邻域(Neighborhood)
#空间中任意一点的邻域是以该点为圆心、以 Eps 为半径的圆区域内包含的点集合
cluster = dict();
i = 0;
for row in coreDist: 
   cluster[i] = numpy.where(row<eps)[0]
   i = i + 1

#然后,将有交集的领域,都合并为新的领域
for i in range(len(cluster)):
   for j in range(len(cluster)):
       if len(set(cluster[j]) & set(cluster[i]))>0 and i!=j:
           cluster[i] = list(set(cluster[i]) | set(cluster[j]))
           cluster[j] = list();

#最后,找出独立(也就是没有交集)的领域,就是我们最后的聚类的结果了
result = dict();
j = 0
for i in range(len(cluster)):
 if len(cluster[i])>0:
   result[j] = cluster[i]
   j = j + 1

#找出每个点所在领域的序号,作为他们最后聚类的结果标记
for i in range(len(result)):
   for j in result[i]:
       data.at[j, 'type'] = i

plt.scatter(
   data['x'], 
   data['y'],
   c=data['type']
)

参考文献
作者A:ken

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容