线性回归
-
理论依据
-
泰勒公式
对于区间[a,b]上任意一点,函数值都可以用两个向量内积的表达式近似,其中 是基函数(basis function),
是相应的系数。高阶表达式 表示两者值的误差。
-
傅里叶公式
周期函数f(x)可以用向量内积近似 , 表示基函数, 表示相应的系数, 表示误差。
-
线性回归
由泰勒公式和傅里叶级数可知,当基函数的数量足够多时,向量内积无限接近于函数值。线性回归的向量内积表达式如下:
-
过拟合原因
模型太过复杂以致于把无关紧要的噪声也学进去了。当线性回归的系数向量间差异比较大时,则大概率设计的模型处于过拟合了。用数学角度去考虑,若某个系数很大,对于相差很近的x值,结果会有较大的差异,这是较明显的过拟合现象。
-
sigmoid函数
-
pytorch 实现步骤
- 生成数据集
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
- 读取数据集
import torch.utils.data as Data
batch_size = 10
# combine featues and labels of dataset
dataset = Data.TensorDataset(features, labels)
# put dataset into DataLoader
data_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # whether shuffle the data or not
num_workers=2, # read data in multithreading
)
for X, y in data_iter:
print(X, '\n', y)
break
- 定义模型
class LinearNet(nn.Module):
def __init__(self, n_feature):
super(LinearNet, self).__init__() # call father function to init
self.linear = nn.Linear(n_feature, 1) # function prototype: `torch.nn.Linear(in_features, out_features, bias=True)`
def forward(self, x):
y = self.linear(x)
return y
net = LinearNet(num_inputs)
print(net)
# ways to init a multilayer network
# method one
net = nn.Sequential(
nn.Linear(num_inputs, 1)
# other layers can be added here
)
# method two
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# method three
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
('linear', nn.Linear(num_inputs, 1))
# ......
]))
print(net)
print(net[0])
- 初始化模型参数
from torch.nn import init
init.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0) # or you can use net[0].bias.data.fill_(0)` to modify it directly
for param in net.parameters():
print(param)
- 定义损失函数
loss = nn.MSELoss() # nn built-in squared loss function
# function prototype: torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')
- 定义优化函数
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.03) # built-in random gradient descent function
print(optimizer) # function prototype: `torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)
- 训练
num_epochs = 3
for epoch in range(1, num_epochs + 1):
for X, y in data_iter:
output = net(X)
l = loss(output, y.view(-1, 1))
optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
l.backward()
optimizer.step()
print('epoch %d, loss: %f' % (epoch, l.item()))
# result comparision
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)