NLTK(二):英文词性标注

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

       将一个句子或者一个段落输入到 NLTK 相应的模块,该模块可以将这个句子或段落中的每个单词标注上其相应的词性,如动词、名词、形容词、副词等。
       使用 NLTK 进行词性标注的代码如下:

import nltk

document = 'Whether you\'re new to programming or an experienced developer, it\'s easy to learn and use Python.'
sentences = nltk.sent_tokenize(document)
for sent in sentences:
    print(nltk.pos_tag(nltk.word_tokenize(sent)))

       输出结果为:

[('Whether', 'IN'), ('you', 'PRP'), ("'re", 'VBP'), ('new', 'JJ'), ('to', 'TO'), ('programming', 'VBG'), ('or', 'CC'), ('an', 'DT'), ('experienced', 'JJ'), ('developer', 'NN'), (',', ','), ('it', 'PRP'), ("'s", 'VBZ'), ('easy', 'JJ'), ('to', 'TO'), ('learn', 'VB'), ('and', 'CC'), ('use', 'VB'), ('Python', 'NNP'), ('.', '.')]

       大家可能不熟悉这里词性的表示方式,现将相应的词性表示方式列举如下:

CC  并列连词          NNS 名词复数        UH 感叹词
CD  基数词              NNP 专有名词        VB 动词原型
DT  限定符            NNP 专有名词复数    VBD 动词过去式
EX  存在词            PDT 前置限定词      VBG 动名词或现在分词
FW  外来词            POS 所有格结尾      VBN 动词过去分词
IN  介词或从属连词     PRP 人称代词        VBP 非第三人称单数的现在时
JJ  形容词            PRP$ 所有格代词     VBZ 第三人称单数的现在时
JJR 比较级的形容词     RB  副词            WDT 以wh开头的限定词
JJS 最高级的形容词     RBR 副词比较级      WP 以wh开头的代词
LS  列表项标记         RBS 副词最高级      WP$ 以wh开头的所有格代词
MD  情态动词           RP  小品词          WRB 以wh开头的副词
NN  名词单数           SYM 符号            TO  to

       词性标注过后,我们可以通过单词的词性来过滤出相应的数据,如我们要过滤出词性为 NNP 的单词,代码如下:

import nltk

document = 'Today the Netherlands celebrates King\'s Day. To honor this tradition, the Dutch embassy in San Francisco invited me to'
sentences = nltk.sent_tokenize(document)

data = []
for sent in sentences:
    data = data + nltk.pos_tag(nltk.word_tokenize(sent))

for word in data:
    if 'NNP' == word[1]:
        print(word)

       执行结果如下:

('Netherlands', 'NNP')
('King', 'NNP')
('Day', 'NNP')
('San', 'NNP')
('Francisco', 'NNP')

       多说一点:
       有了词性标注之后,在后续的文本处理过程中会有更多的线索供我们使用。

相关文档

Category: NLTK

上一篇:NLTK(一):英文分词分句
下一篇:NLTK(三):使用模型做预测

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容