seq2seq 的 keras 实现

上一篇 seq2seq 入门 提到了 cho 和 Sutskever 的两篇论文,今天来看一下如何用 keras 建立 seq2seq。

第一个 LSTM 为 Encoder,只在序列结束时输出一个语义向量,所以其 "return_sequences" 参数设置为 "False"

使用 "RepeatVector" 将 Encoder 的输出(最后一个 time step)复制 N 份作为 Decoder 的 N 次输入

第二个 LSTM 为 Decoder, 因为在每一个 time step 都输出,所以其 "return_sequences" 参数设置为 "True"

from keras.models import Sequential
from keras.layers.recurrent import LSTM
from keras.layers.wrappers import TimeDistributed
from keras.layers.core import Dense, RepeatVector

def build_model(input_size, max_out_seq_len, hidden_size):
    
    model = Sequential()
    
    # Encoder(第一个 LSTM)     model.add( LSTM(input_dim=input_size, output_dim=hidden_size, return_sequences=False) )
    
    
    model.add( Dense(hidden_size, activation="relu") )
    
    # 使用 "RepeatVector" 将 Encoder 的输出(最后一个 time step)复制 N 份作为 Decoder 的 N 次输入
    model.add( RepeatVector(max_out_seq_len) )
    
    # Decoder(第二个 LSTM) 
    model.add( LSTM(hidden_size, return_sequences=True) )
    
    # TimeDistributed 是为了保证 Dense 和 Decoder 之间的一致
    model.add( TimeDistributed(Dense(output_dim=input_size, activation="linear")) )
    
    model.compile(loss="mse", optimizer='adam')

    return model

也可以用 GRU 作为 RNN 单元,代码如下,区别就是将 LSTM 处换成 GRU:

from keras.layers.recurrent import GRU
from keras.layers.wrappers import TimeDistributed
from keras.models import Sequential, model_from_json
from keras.layers.core import Dense, RepeatVector    

def build_model(input_size, seq_len, hidden_size):
    """建立一个 sequence to sequence 模型"""
    model = Sequential()
    model.add(GRU(input_dim=input_size, output_dim=hidden_size, return_sequences=False))
    model.add(Dense(hidden_size, activation="relu"))
    model.add(RepeatVector(seq_len))
    model.add(GRU(hidden_size, return_sequences=True))
    model.add(TimeDistributed(Dense(output_dim=input_size, activation="linear")))
    model.compile(loss="mse", optimizer='adam')

    return model

上面是一个最简单的 seq2seq 模型,因为没有将 Decoder 的每一个时刻的输出作为下一个时刻的输入。


当然,我们可以直接用 keras 的 seq2seq 模型:

https://github.com/farizrahman4u/seq2seq

下面是几个例子:

简单的 seq2seq 模型:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8)
model.compile(loss='mse', optimizer='rmsprop')

深度 seq2seq 模型:encoding 有 3 层, decoding 有 3 层

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8, depth=3)
model.compile(loss='mse', optimizer='rmsprop')

encoding 和 decoding 的层数也可以不同:encoding 有 4 层, decoding 有 5 层

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=20, depth=(4, 5))
model.compile(loss='mse', optimizer='rmsprop')

上面几种也是最简单的 SimpleSeq2Seq 的应用。


在论文 Sequence to Sequence Learning with Neural Networks 给出的 seq2seq 中,encoder 的隐藏层状态要传递给 decoder,而且 decoder 的每一个时刻的输出作为下一个时刻的输入,而且这里内置的模型中,还将隐藏层状态贯穿了整个 LSTM:

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

cho 的这篇论文 Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 中的 seq2seq 模型实现为:decoder 在每个时间点的语境向量都会获得一个 'peek'

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4, peek=True)
model.compile(loss='mse', optimizer='rmsprop')

在论文 Neural Machine Translation by Jointly Learning to Align and Translate 中带有注意力机制的 seq2seq:没有隐藏状态的传播,而且 encoder 是双向的 LSTM

import seq2seq
from seq2seq.models import AttentionSeq2Seq

model = AttentionSeq2Seq(input_dim=5, input_length=7, hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

参考:
https://github.com/farizrahman4u/seq2seq
http://www.zmonster.me/2016/05/29/sequence_to_sequence_with_keras.html
http://jacoxu.com/encoder_decoder/


推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容