python 数据图表呈现

@(python)

平时压力测试,生成一些数据后分析,直接看 log 不是很直观,前段时间看到公司同事分享了一个绘制图表python 模块 : plotly, 觉得很实用,利用周末时间熟悉下。

plotly

plotly 主页 : https://plot.ly/python/

安装

在 ubuntu 环境下,安装 plotly 很简单
python 版本2.7+

$ sudo pip install plotly

绘图

在 plotly 网站注册后,可以直接将生成的图片保存到网站上,便于共享保存。
这里使用离线的接口,生成的 html 保存在本地文件

绘制直线图

先随便搞一组数据用来绘制图表

lcd@ubuntu:~/$ cat gen_log.sh 
#!/bin/bash
count=$1
while [ $count -gt 0 ]
do
    sar -n DEV 1 1 | grep "Average:" | grep "eth0" | awk '{print $4,$5,$6}'
    count=$(($count-1))
done
lcd@ubuntu:~/$ sh gen_log.sh 1000 > log.txt

通过上述脚本,获取每秒钟网卡的3个数据,记录文本,利用 ploty 按时间绘制成直线图,实现如下:

#!/usr/bin/env python
import plotly.offline as pltoff
import plotly.graph_objs as go

def line_plots(name="line_plots.html"):
    dataset = {
        'time': [],
        'rx': [],
        'tx': [],
        'util': []
    }
    with open("./log.txt") as f:
        i = 0
        for line in f:
            items = line.split()
            dataset['time'].append(i)
            dataset['rx'].append(items[0])
            dataset['tx'].append(items[1])
            dataset['util'].append(items[2])
            i += 1
            
    data_g = []
    # 构建 time - rx 数据关系,折线图
    tr_rx = go.Scatter(
        x = dataset['time'],
        y = dataset['rx'],
        name = 'rx')
    data_g.append(tr_rx)

    tr_tx = go.Scatter(
        x = dataset['time'],
        y = dataset['tx'],
        name = 'tx')
    data_g.append(tr_tx)

    tr_util = go.Scatter(
        x = dataset['time'],
        y = dataset['util'],
        name = 'util')
    data_g.append(tr_util)

    # 设置图表布局
    layout = go.Layout(title="Line plots",
        xaxis={'title':'time'}, yaxis={'title':'value'})
    fig = go.Figure(data=data_g, layout=layout)
    # 生成离线html
    pltoff.plot(fig, filename=name)

if __name__=='__main__':
    line_plots()

生成图表如下所示 :

line_plot

柱形图

#!/usr/bin/env python
import plotly.offline as pltoff
import plotly.graph_objs as go

def bar_charts(name="bar_charts.html"):
    dataset = {'x':['man', 'woman'],
               'y1':[35, 26],
               'y2':[33, 30]}
    data_g = []
    tr_y1 = go.Bar(
        x = dataset['x'],
        y = dataset['y1'],
        name = '2016'

    )
    data_g.append(tr_y1)

    tr_y2 = go.Bar(
    x = dataset['x'],
    y = dataset['y2'],
    name = '2017'

    )
    data_g.append(tr_y2)
    layout = go.Layout(title="bar charts",
        xaxis={'title':'x'}, yaxis={'title':'value'})
    fig = go.Figure(data=data_g, layout=layout)
    pltoff.plot(fig, filename=name)

if __name__=='__main__':
    bar_charts()
bar char

饼状图

#!/usr/bin/env python
import plotly.offline as pltoff
import plotly.graph_objs as go

def pie_charts(name='pie_chart.html'):
    dataset = {
        'labels':['Windows', 'Linux', 'MacOS'],
        'values':[280, 10, 30]}
    data_g = []
    tr_p = go.Pie(
    labels = dataset['labels'],
    values = dataset['values']

    )
    data_g.append(tr_p)
    layout = go.Layout(title="pie charts")
    fig = go.Figure(data=data_g, layout=layout)
    pltoff.plot(fig, filename=name)

if __name__=='__main__':
    pie_charts()

pie_chart
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容