爬虫(本地HTML)
- 获取标签中的内容,末尾要添加text()
- //表示可以代表从任意位置出发
格式://标签1[@属性=属性值]/标签2[@属性=属性值].../text()
- 获取标签 — //标签/text()
- 获取属性 — //@属性
from lxml import html
# 读取html文件
with open('./index.html','r',encoding='utf-8') as f:
html_data=f.read()
#print(html_data)
#解析html文件,获得selector对象
selector=html.fromstring(html_data)
#selector中调用xpath方法
#要获取标签中的内容,末尾要添加text()
h1=selector.xpath('/html/body/h1/text()')
print(h1[0])
#//表示可以代表从任意位置出发
# //标签1[@属性=属性值]/标签2[@属性=属性值].../text()
a=selector.xpath('//div[@id="container"]/a/text()')
print(a[0])
#获取p标签
#p = selector.xpath('//div[@id="container"]/p/text()')
p = selector.xpath('//p/text()')
print(p[0])
#获取属性
link = selector.xpath('//div[@id="container"]/a/@href')
print(link[0])
requests包
- respnse.text—获取str类型的响应 修改编码方式response.encoding
- respnse.content—获取bytes类型的响应 图片类型 修改编码方式
- respnse.headers—获取响应头
- respnse.status_code—获取状态码
- 大多数网站存在反爬虫的编码,所以,需要使用请求头
mport requests
# 没有添加请求头的知乎网站
resp = requests.get('https://www.zhihu.com/')
print(resp.status_code)
# 使用字典定义请求头
headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
resp = requests.get('https://www.zhihu.com/', headers = headers)
print(resp.status_code)
写入本地
#当当网
import requests
def spider_dangdang(isbn):
url='http://search.dangdang.com/?key={}&act=input'.format(isbn)
#目标站点地址
#获取站点str类型的响应
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
resp=requests.get(url,headers=headers)
html_data=resp.text
#将html页面写入本地
with open('dangdang.html','w',encoding='utf-8') as f:
f.write(html_data)
spider_dangdang('9787115490995')
爬虫(当当网搜索)
import requests
from lxml import html
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def spider_dangdang(isbn):
book_list = []
url = 'http://search.dangdang.com/?key={}&act=input'.format(isbn)
# 获取站点str类型的响应
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
resp = requests.get(url, headers=headers)
html_data = resp.text
# 提取目标站的信息
selector = html.fromstring(html_data)
ul_list = selector.xpath('//div[@id="search_nature_rg"]/ul/li')
print('您好,共有{}家店铺售卖此图书'.format(len(ul_list)))
# 遍历 ul_list
for li in ul_list:
# 图书名称
title = li.xpath('./a/@title')[0].strip()
# print(title)
# 图书购买链接
link = li.xpath('a/@href')[0]
# print(link)
# 图书价格
price = li.xpath('./p[@class="price"]/span[@class="search_now_price"]/text()')[0]
price = float(price.replace('¥',''))
# print(price)
# 图书卖家名称
store = li.xpath('./p[@class="search_shangjia"]/a/text()')
# if len(store) == 0:
# store = '当当自营'
# else:
# store = store[0]
#三言式
store = '当当自营' if len(store) == 0 else store[0]
# print(store)
# 添加每一个商家的图书信息
book_list.append({
'title':title,
'price':price,
'link':link,
'store':store
})
# 按照价格进行排序
book_list.sort(key=lambda x:x['price'])
# 遍历booklist
for book in book_list:
print(book)
# 展示价格最低的前10家 柱状图
# 店铺的名称
top10_store = [book_list[i] for i in range(10)]
# x = []
# for store in top10_store:
# x.append(store['store'])
x = [x['store'] for x in top10_store]
print(x)
# 图书的价格
y = [x['price'] for x in top10_store]
print(y)
# plt.bar(x, y)
plt.barh(x, y)
plt.show()
# 存储成csv文件
df = pd.DataFrame(book_list)
df.to_csv('dangdang.csv')
spider_dangdang('9787115428028')
test—爬虫(豆瓣电影)
- 电影名,上映日期,类型,上映国家,想看人数
- 根据想看人数进行排序
- 绘制即将上映电影国家的占比图
- 绘制top5最想看的电影
import requests
from lxml import html
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def spider_dangdang():
movie_list = []
url = 'https://movie.douban.com/cinema/later/chongqing/'
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
resp = requests.get(url, headers=headers)
html_data = resp.text
selector = html.fromstring(html_data)
ul_list = selector.xpath('//div[@id="showing-soon"]/div')
print('您好,共有{}部电影即将上映'.format(len(ul_list)))
# 遍历 ul_list
for li in ul_list:
# 电影名称
title = li.xpath('./div/h3/a/text()')[0]
print(title)
# 上映日期
date = li.xpath('./div/ul/li[1]/text()')[0]
print(date)
#类型
type =li.xpath('./div/ul/li[2]/text()')[0]
print(type)
#上映国家
city=li.xpath('./div/ul/li[3]/text()')[0]
print(city)
#想看人数
people=li.xpath('./div/ul/li[4]/span/text()')[0]
print(people)
people = int(people.replace('人想看',''))
# 添加每一个电影的相关信息
movie_list.append({
'title':title,
'date':date,
'type':type,
'city':city,
'people':people
})
print(movie_list)
# 按照想看人数排序进行排序
movie_list.sort(key=lambda x:x['people'],reverse=True)
#提取city信息
country=[]
for city in movie_list:
country.append((city['city']))
c={}
#将国家信息汇总
for city in country:
c[city] = c.get(city, 0) + 1
print(c)
items = list(c.items())
#分别提取国家名和次数
baifeibi = []
guojia = []
for i in range(len(items)):
city,bai = items[i]
baifeibi.append(bai)
guojia.append(city)
plt.pie(baifeibi, labels=guojia, autopct='%1.1f%%')
plt.show()
# 最想看的电影排名 柱状图
# 电影名
top5_movie = [movie_list[i] for i in range(5)]
print(top5_movie)
x = [x['title'] for x in top5_movie]
print(x)
# 图书的价格
y = [x['people'] for x in top5_movie]
print(y)
plt.bar(x, y)
#plt.barh(x, y)
plt.show()
# 存储成csv文件
df = pd.DataFrame(movie_list)
df.to_csv('test.csv')
spider_dangdang()